Nanomedicine, Volume I: Basic Capabilities

© 1999 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999


3.2 Diffusion Transport

Fluidic transfer of material, known as convective-diffusive transport, can occur either by convection due to bulk flow or by diffusion due to Brownian motion. In convective transport, material is carried along fluid streamlines at the mean velocity of the fluid, with a velocity distribution such as that in Poiseuille flow (Section Bulk flow is customarily regarded as the most important physiological transport mechanism in the human circulation. Only for the smallest molecules, such as water or glucose, does the time required to diffuse across the width of a capillary roughly equal the time taken by a fluid element to flow the same distance (~0.02 sec). Larger molecules such as fibrinogen take ~100 times longer (~2 sec) to diffuse across one capillary width.

However, bulk flow in the body is usually laminar. Transported materials travel parallel to (and thus cannot reach) fluid/solid interfaces such as the surfaces of blood vessels or membranes. Wall interactions are made possible by diffusion, a random process in which particles can move transversely to fluid streamlines in response to molecular-scale collisions.

Additionally, the movement of micronscale devices within a bulk fluid flow is dominated by viscous, not inertial, forces (Section Molecular transport to and from such nanodevices is governed by diffusion, not by bulk flow.


Last updated on 7 February 2003