Nanomedicine, Volume IIA: Biocompatibility

© 2003 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003


 

References 200-299

200. M.F. Stanton, M. Layard, A. Tegeris, E. Miller, M. May, E. Kent, “Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension,” J. Natl. Cancer Inst. 58(1977):587-603.

201. D. Koh, T.C. Aw, I.S. Foulds, “Fiberglass Dermatitis from Printed Circuit Boards,” American Journal of Industrial Medicine 21(1992):193-198.

202. E. Bossard, I. Stolkin, M.A. Spycher, J.R. Ruttner, “Quantification and particle size distribution of inhaled fibres in the lung,” IARC Sci. Publ. 30(1980):35-41.

203. K. Paulsen, “Bacterial airborne dispersal during the drilling of infected bone,” H.N.O. 24(April 1976):119-121. In German.

204. S.M. Collard, R.K. McDaniel, D.A. Johnston, “Particle size and composition of composite dusts,” Am. J. Dent. 2(October 1989):247-253.

205. M. Demedts, B. Gheysens, J. Nagels, E. Verbeken, J. Lauweryns, A. Van den Eeckhout, D. Lahaye, A. Gyselen, “Cobalt Lung in Diamond Polishers,” American Review of Respiratory Diseases 130(July 1984):130-135.

206. M.R. Cullen, “Respiratory disease from hard metal exposure. A continuing enigma,” Chest 86(1984):513-514.

207. P. Roto, “Asthma, symptoms of chronic bronchitis and ventilatory capacity among cobalt and zinc production workers,” Scand. J. Work. Environ. Health 6(1986):49 (suppl. 1).

208. Dominique Lison, Robert Lauwerys, “In Vitro Cytotoxic Effects of Cobalt-Containing Dusts on Mouse Peritoneal and Rat Alveolar Macrophages,” Environmental Research 52(1990):187-198.

209. D.G. Barceloux, “Cobalt,” J. Toxicol. Clin. Toxicol. 37(1999):201-206.

210. J. Ph. Gennart, R. Lauwerys, “Ventilatory function of workers exposed to cobalt and diamond containing dust,” Int. Arch. Occup. Environ. Health 62(1990):333-336.

211. R. Lauwerys, D. Lison, “Health risks associated with cobalt – an overview,” Sci. Total Environ. 150(30 June 1994):1-6.

212. B. Swennen, J.P. Buchet, D. Stanescu, D. Lison, R. Lauwerys, “Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal,” Br. J. Ind. Med. 50(September 1993):835-842.

213. D. Lison, R. Lauwerys, M. Demedts, B. Nemery, “Experimental research into the pathogenesis of cobalt/hard metal lung disease,” Eur. Respir. J. 9(May 1996):1024-1028.

214. G.W.H. Schepers, “The biological action of tungsten carbide and cobalt,” Arch. Ind. Health 12(1955):140-146.

215. D. Lison, R. Lauwerys, “Biological Responses of Isolated Macrophages to Cobalt Metal and Tungsten Carbide-Cobalt Powders,” Parmacology and Toxicology 69(1991):282-285.

216. Bernard Gheysens, Johan Auwerx, Andre Van den Eeckhout, Maurits Demedts, “Cobalt-induced Bronchial Asthma in Diamond Polishers,” Chest 88(November 1985):740-744.

217. E.J. Van Cutsem, J.L. Ceuppens, L.M. Lacquet, M. Demedts, “Combined asthma and alveolitis induced by cobalt in a diamond polisher,” Eur. J. Respir. Dis. 70(1987):54-61.

218. J.R. Ruttner, M.A. Spycher, I. Stolkin, “Inorganic particulates in pneumoconiotic lungs of hard metal grinders,” Br. J. Ind. Med. 44(October 1987):657-660.

219. N.M. Rao, S.K. Kashyap, P.K. Kulkarni, H.N. Saiyed, A.K. Purohit, B.D. Patel, “Pulmonary function studies in 15 to 18 years age workers exposed to dust in industry,” Indian J. Physiol. Pharmacol. 36(January 1992):51-54.

220. K. Mizuno, N. Yanagisawa, Y. Ichinose, K. Utsumi, I. Kasuga, H. Kusumoto, K. Toyama, “Use of a bronchoscope for thoracoscopic observation and diagnosis of pleural plaques,” Nihon Kyobu Shikkan Gakkai Zasshi 35(April 1997):471-476. In Japanese.

221. J.A. Schmidt, C.N. Oliver, J.L. Lepe-Zuniga, I. Green, I. Gery, “Silica-stimulated monocytes release fibroblast proliferation factors identical to interleukin 1. A potential role for interleukin 1 in the pathogenesis of silicosis,” J. Clin. Invest. 73(May 1984):1462-1472.

222. Mikael Hedenborg, Matti Klockars, “Quartz-Dust-Induced Production of Reactive Oxygen Metabolites by Human Granulocytes,” Lung 167(1989):23-32.

223. P.F. Holt, M. Horne, “Dust from carbon fibre,” Environ. Res. 17(October 1978):276-283.

224. P.E. Owen, J.R. Glaister, B. Ballantyne, J.J. Clary, “Subchronic inhalation toxicology of carbon fibers,” J. Occup. Med. 28(May 1986):373-376.

225. H.D. Jones, T.R. Jones, W.H. Lyle, “Carbon fiber: results of a survey of process workers and their environment in a factory producing continuous filament,” Ann. Occup. Hyg. 26(1982):861-868.

226. R.P. Fedjakina, “Biological effect of exposure to carbon fiber dust (experimental data),” Gig. Tr. Prof. Zabol. 3(1984):30-32.

227. A.O. Bech, M.D. Kipling, W.E. Zundel, “Emery pneumoconiosis,” Trans. Assoc. Ind. Med. Off. 15(July 1965):110-115.

228. J.C. Melissinos, A. Collet, H. Daniel-Moussard, “Experimental study on a natural emery at the Cyclades,” Int. Arch. Arbeitsmed. 22(17 August 1966):185-193.

229. J. Brody, A. Miller, A.M. Langer, “Pneumoconiosis associated with exposure to glass and abrasive particles,” Am. J. Ind. Med. 6(1984):339-345.

230. D.F. Williams, ed., Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, 3-5 March 1986, Progress in Biomedical Engineering, Vol. 4, Elsevier, Amsterdam, 1987.

231. Buddy D. Ratner, “New ideas in biomaterials science – a path to engineered biomaterials,” J. Biomed. Mater. Res. 27(1993):837-850.

232. Frederick J. Schoen, R.J. Levy, H.R. Piehler, “Biocompatibility of cardiovascular materials,” Cardiovasc. Pathol. 1(1992):29-52.

233. Nicholas A. Peppas, Robert Langer, “New Challenges in Biomaterials,” Science 263(25 March 1994):1715-1720.

234. Jonathan Black, Biological Performance of Materials: Fundamentals of Biocompatibility, Third Edition, Marcel Dekker, New York, 1999.

235. David F. Williams, ed., Fundamental Aspects of Biocompatibility, Vols. I and II, CRC Press, Boca Raton, FL, 1981.

236. Julian H. Braybrook, ed., Biocompatibility Assessment of Medical Devices and Materials, John Wiley & Sons, New York, 1997.

237. Frederick H. Silver, David L. Christiansen, Biomaterials Science and Biocompatibility, Springer Verleg, New York, 1999.

238. Cheryl R. Blanchard, “Biomaterials: Body Parts of the Future,” Technology Today (Fall 1995); http://www.swri.org/3pubs/ttoday/fall/implant.htm

239. Joon B. Park, Roderic S. Lakes, Biomaterials: An Introduction, Plenum Press, New York, 1992.

240. Ralph S. Greco, ed., Implantation Biology: The Host Response and Biomedical Devices, CRC Press, Boca Raton, FL, 1994.

241. Buddy D. Ratner, Allan S. Hoffman, Fredrick J. Schoen, Jack E. Lemons, eds., Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, New York, 1996.

242. Buddy D. Ratner, David G. Castner, eds., Surface Modification of Polymeric Biomaterials, Plenum Publ. Corp., New York, 1997.

243. Handbook of Biomaterial Properties, Kluwer Academic Publishers, 1998.

244. R.H. Haug, “Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures,” J. Oral Maxillofac. Surg. 54(May 1996):611-617.

245. P. Matter, H.B. Burch, “Clinical experience with titanium implants, especially with the limited contact dynamic compression plate system,” Arch. Orthop. Trauma Surg. 109(1990):311-313.

246. W.S. Pietrzak, M.L. Verstynen, D.R. Sarver, “Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon,” Craniofac. Surg. 8(March 1997):92-96.

247. A.V. Kumar, D.A. Staffenberg, J.A. Petronio, R.J. Wood, “Bioabsorbable plates and screws in pediatric craniofacial surgery: a review of 22 cases,” J. Craniofac. Surg. 8(March 1997):97-99.

248. J.A. Simon, J.L. Ricci, P.E. Cesare, “Bioresorbable fracture fixation in orthopedics: a comprehensive review,” Am. J. Orthop. 26(October 1997):665-671, 26(November 1997):754-762.

249. C.M. Sharkness, S. Hamburger, R.M. Moore Jr., R.G. Kaczmarek, “Prevalence of Artificial Hips in the United States,” J. Long Term Effects Med. Implants, 2(1992):1-8; “Prevalence of Artificial Hip Implants and use of Health Services by Recipients,” Public Health Rep. 108(January-February 1993):70-75.

250. David F. Williams, Biocompatibility of Orthopedic Implants, Vols. I and II, CRC Press, Boca Raton, FL, 1982.

251. Gunther Heimke, ed., Osseo-Integrated Implants, Vol. I: Basics, Materials, and Joint Replacements, CRC Press, Boca Raton, FL, 1990.

252. J.S. Siopack, H.E. Jergesen, “Total hip arthroplasty,” West. J. Med. 162(March 1995):243-249.

253. S.R. Goldring, C.R. Clark, T.M. Wright, “The problem in total joint arthroplasty: aseptic loosening,” J. Bone Joint Surg. Am. 75(June 1993):799-801; see also pp. 802-879.

254. D.D. Dean, Z. Schwartz, C.R. Blanchard, Y. Liu, C.M. Agrawal, C.H. Lohmann, V.L. Sylvia, B.D. Boyan, “Ultrahigh molecular weight polyethylene particles have direct effects on proliferation, differentiation, and local factor production of MG63 osteoblast-like cells,” J. Orthop. Res. 17(January 1999):9-17.

255. H. McKellop, F.W. Shen, B. Lu, P. Campbell, R. Salovey, “Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements,” J. Orthop. Res. 17(March 1999):157-167.

256. W.H. Harris, “Osteolysis and Particle Disease in Hip Replacement: A Review,” Acta Orthopaed. Scand. 65(1994):113-123.

257. A. Kobayashi, W. Bonfield, Y. Kadoya, T. Yamac, M.A. Freeman, G. Scott, P.A. Revell, “The size and shape of particulate polyethylene wear debris in total joint replacements,” Proc. Inst. Mech. Eng. H 211(1997):11-15; M.A. Wirth, C.M. Agrawal, J.D. Mabrey, D.D. Dean, C.R. Blanchard, M.A. Miller, C.A. Rockwood Jr., “Isolation and characterization of polyethylene wear debris associated with osteolysis following total shoulder arthroplasty,” J. Bone Joint Surg. Am. 81(January 1999):29-37; C. Peterson, J.B. Benjamin, J.A. Szivek, P.L. Anderson, J. Shriki, M. Wong, “Polyethylene particle morphology in synovial fluid of failed knee arthroplasty,” Clin. Orthop. 359(February 1999):167-175; J.D. Mabrey, A. Afsar-Keshmiri, G.A. McClung 2nd, M.A. Pember 2nd, T.M. Wooldridge, C. Mauli Agrawal, “Comparison of UHMWPE particles in synovial fluid and tissues from failed THA,” J. Biomed. Mater. Res. 58(2001):196-202.

258. R.M. Streicher, M. Semlitsch, R. Schon, H. Weber, C. Rieker, “Metal-on-metal articulation for artificial hip joints: laboratory study and clinical results,” Proc. Inst. Mech. Eng. [H] 210(1996):223-232.

259. Eric Roston, “Very Small Business,” Time Global Business, September 2002, A12-A18; http://www.time.com/time/globalbusiness/article/0,9171,1101020923-351202-3,00.html

260. C.L. Berry, ed., The Pathology of Devices, Current Topics in Pathology Vol. 86, Springer-Verlag, New York, 1994.

261. J.K. Ryder, H. Cao, “Structural failure of pyrolytic carbon heart valves,” J. Heart Valve Dis. 5(June 1996):S79-S85; “Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics Prosthetic Heart Valve,” J. Heart Valve Dis. 5(June 1996):S86-S96.

262. A.D. Haubold, “On the durability of pyrolytic carbon in vivo,” Med. Prog. Technol. 20(1994):201-208.

263. H. Cao, “Mechanical performance of pyrolytic carbon in prosthetic heart valve applications,” J. Heart Valve Dis. 5(June 1996):S32-S49.

264. N.H. Hwang, “Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status,” J. Heart Valve Dis. 7(March 1998):140-150.

265. K. Xiao, A.J. Appleby, “Stress corrosion cracking in Bjork-Shiley convexo-concave prosthetic heart valves due to random in vivo electrochemical pulsing,” Int. J. Artif. Organs 19(August 1996):477-486.

266. P. Arru, S. Rinaldi, C. Stacchino, F. Vallana, “Wear assessment in bileaflet heart valves,” J. Heart Valve Dis. 5(June 1996):S133-143, 144-148 (discussion).

267. Jack W. Love, “Chapter 25. Cardiac Prostheses,” in Robert P. Lanza, Robert Langer, William L. Chick, eds., Principles of Tissue Engineering, R.G. Landes Company, Georgetown TX, 1997, pp. 365-379.

268. T.E. David, “Aortic valve replacement with stentless porcine bioprostheses,” J. Card. Surg. 13(September-October 1998):344-351.

269. T.E. David, “The use of pericardium in acquired heart disease: a review article,” J. Heart Valve Dis. 7(January 1998):13-18.

270. A. Senning, “Fascia lata replacement of aortic valves,” J. Thorac. Cardiovasc. Surg. 54(1967):465-470.

271. Jack W. Love, Autologous Tissue Heart Valves, R.G. Landes, Austin TX, 1993.

272. D.N. Ross, “Replacement of aortic and mitral valves with a pulmonary autograft,” Lancet 2(4 November 1967):956-958.

273. M.E. Staab, R.A. Nishimura, J.A. Dearani, T.A. Orszulak, “Aortic valve homografts in adults: a clinical perspective,” Mayo Clin. Proc. 73(March 1998):231-238.

274. J.E. Mayer Jr., T. Shin’oka, D. Shum-Tim, “Tissue engineering of cardiovascular structures,” Curr. Opin. Cardiol. 12(November 1997):528-532.

275. R.J. Levy, et al., “Cardiovascular Implant Calcification: A Survey and Update,” Biomaterials 12(1991):707-714.

276. K.P. Rao, C. Shanthi, “Reduction of calcification by various treatments in cardiac valves,” J. Biomater. Appl. 13(January 1999):238-268.

277. P.R. Schuster, J.W. Wagner, “A preliminary durability study of two types of low-profile pericardial bioprosthetic valves through the use of accelerated fatigue testing and flow characterization,” J. Biomed. Mater. Res. 23(February 1989):207-222.

278. H.N. Sabbah, M.S. Hamid, P.D. Stein, “Mechanical factors in the degeneration of porcine bioprosthetic valves: an overview,” J. Card. Surg. 4(December 1989):302-309.

279. M.S. Hamid, H.N. Sabbah, P.D. Stein, “Vibrational analysis of bioprosthetic heart valve leaflets using numerical models: effects of leaflet stiffening, calcification, and perforation,” Circ. Res. 61(November 1987):687-694.

280. S. Santavirta, A. Gristina, Y.T. Konttinen, “Cemented versus cementless hip arthroplasty. A review of prosthetic biocompatibility,” Acta Orthop. Scand. 63(April 1992):225-232; W.C. Head, D.J. Bauk, R.H. Emerson Jr., “Titanium as the material of choice for cementless femoral components in total hip arthroplasty,” Clin. Orthop. 311(February 1995):85-90.

281. T.J. Chang, M.B. Werd, C. Hovelsen, “Metallic implants used in foot surgery,” Clin. Podiatr. Med. Surg. 12(July 1995):457-474; L. Stadtmauer, M.V. Sauer, “Reversal of tubal sterilization using laparoscopically placed titanium staples: preliminary experience,” Hum. Reprod. 12(April 1997):647-649.

282. H. Prigent, P. Pellen-Mussi, G. Cathelineau, M. Bonnaure-Mallet, “Evaluation of the biocompatibility of titanium-tantalum alloy versus titanium,” J. Biomed. Mater. Res. 39(February 1998):200-206.

283. J. Black, “Biological performance of tantalum,” Clin. Mater. 16(1994):167-173.

284. I.O. Barcellos, S.G. Carobrez, A.T. Pires, M. Alvarez-Silva, “In vivo and in vitro responses to poly(ethylene terephthalate-co-diethylene glycol terephthalate) and polyethylene oxide blends,” Biomaterials 19(November 1998):2075-2082.

285. A.A. Broess, “Aluminum oxide ceramic PORP and TORP prostheses,” Acta Otorhinolaryngol. Belg. 37(1983):726-734. In Dutch.

286. G.S. Godbersen, “Septal support made from aluminum oxide ceramics,” Laryngol. Rhinol. Otol. (Stuttg) 64(June 1985):290-291. In German.

287. K. Hayashi, N. Matsuguchi, K. Uenoyama, Y. Sugioka, “Bone-implant interface mechanics of in vivo bioinert ceramics,” Biomaterials 14(December 1993):1173-1179; “Re-evaluation of the biocompatibility of bioinert ceramics in vivo,” Biomaterials 13(1992):195-200.

288. W.R. Lacefield, “Current status of ceramic coatings for dental implants,” Implant. Dent. 7(1998):315-322.

289. D. Plester, K. Jahnke, “Ceramic implants in otologic surgery,” Am. J. Otol. 3(October 1981):104-108.

290. S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo, “Bone bonding mechanism of beta-tricalcium phosphate,” J. Biomed. Mater. Res. 25(October 1991):1303-1315.

291. Y. Doi, H. Iwanaga, T. Shibutani, Y. Moriwaki, Y. Iwayama, “Osteoclastic responses to various calcium phosphates in cell cultures,” J. Biomed. Mater. Res. 47(5 December 1999):424-433.

292. Y. Imai, M. Nagai, M. Watanabe, “Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment,” J. Biomater. Sci. Polym. Ed. 10(1999):421-432; Y. Imai, A. Fukuzawa, M. Watanabe, “Effect of blending tricalcium phosphate on hydrolytic degradation of a block polyester containing poly(L-lactic acid) segment,” J. Biomater. Sci. Polym. Ed. 10(1999):773-786.

293. S. Li, M. Vert, “Hydrolytic degradation of the coral/poly(DL-lactic acid) bioresorbable material,” J. Biomater. Sci. Polym. Ed. 7(1996):817-827; see also S. Li, S. McCarthy, “Further investigations on the hydrolytic degradation of poly (DL-lactide),” Biomaterials 20(January 1999):35-44.

294. M. Vert, G. Schwach, R. Engel, J. Coudane, “Something new in the field of PLA/GA bioresorbable polymers?” J. Controlled Release 53(30 April 1998):85-92.

295. S.J. Shieh, M.C. Zimmerman, J.R. Parsons, “Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for the repair of soft tissue injuries,” J. Biomed. Mater. Res. 24(July 1990):789-808.

296. W. Shalaby, ed., Biomedical Polymers: Designed-to-Degrade Systems, Hanser Gardner Publications, 1994.

297. I.D. Thompson, L.L. Hench, “Mechanical properties of bioactive glasses, glass-ceramics and composites,” Proc. Inst. Mech. Eng. [H] 212(1998):127-136.

298. L.L. Hench, J. Wilson, “Bioceramics,” Materials Research Society Bulletin, 16(September 1991):62-74.

299. J.A. Hubbell, “Bioactive biomaterials,” Curr. Opin. Biotechnol. 10(April 1999):123-129.

 


Last updated on 16 April 2004