Nanomedicine, Volume IIA: Biocompatibility

© 2003 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003


References 3500-3599

3500. R.D. Nelson, V.D. Fiegel, R.L. Simmons, “Chemotaxis of human polymorphonuclear neutrophils under agarose: morphologic changes associated with the chemotactic response,” J. Immunol. 117(November 1976):1676-1683.

3501. F. Grinnell, “Migration of human neutrophils in hydrated collagen lattices,” J. Cell Sci. 58(December 1982):95-108.

3502. S.J. Dixon, S. Pitaru, U. Bhargava, F.E. Aubin, “Membrane blebbing is associated with Ca2+-activated hyperpolarizations induced by serum and alpha 2-macroglobulin,” J. Cell Physiol. 132(September 1987):473-482.

3503. B. Mehul, R.C. Hughes, “Plasma membrane targetting, vesicular budding and release of galactin 3 from the cytoplasm of mammalian cells during secretion,” J. Cell Sci. 110(May 1997):1169-1178.

3504. J. Bielecki, P. Youngman, P. Connelly, D.A. Portnoy, “Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells,” Nature 345(10 May 1990):175-176.

3505. D.A. Portnoy, R.K. Tweten, M. Kehoe, J. Bielecki, “Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells,” Infect. Immun. 60(July 1992):2710-2717.

3506. R.W. Titball, “Bacterial phospholipases C,” Microbiol. Rev. 57(June 1993):347-366.

3507. G.A. Smith, H. Marquis, S. Jones, N.C. Johnston, D.A. Portnoy, H. Goldfine, “The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread,” Infect. Immun. 63(November 1995):4231-4237.

3508. Q704. B. Gonzalez-Zorn, G. Dominguez-Bernal, M. Suarez, M.T. Ripio, Y. Vega, S. Novella, J.A. Vazquez-Boland, “The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole,” Mol. Microbiol. 33(August 1999):510-523.

3509. J.A. Theriot, T.J. Mitchison, L.G. Tilney, D.A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(21 May 1992):257-260.

3510. P. Cossart, C. Kocks, “The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes,” Mol. Microbiol. 13(August 1994):395-402.

3511. G.A. Smith, D.A. Portnoy, “How the Listeria monocytogenes ActA protein converts actin polymerization into a motile force,” Trends Microbiol. 5(July 1997):272-276.

3512. J. Skoble, D.A. Portnoy, M.D. Welch, “Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility,” J. Cell Biol. 150(7 August 2000):527-538.

3513. N. High, J. Mounier, M.C. Prevost, P.J. Sansonetti, “IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole,” EMBO J. 11(May 1992):1991-1999.

3514. T. Vasselon, J. Mounier, M.C. Prevost, R. Hellio, P.J. Sansonetti, “Stress fiber-based movement of Shigella flexneri within cells,” Infect. Immun. 59(May 1991):1723-1732.

3515. R. Schuch, R.C. Sandlin, A.T. Maurelli, “Shigella flexneri in intercellular dissemination,” Mol. Microbiol. 34(November 1999):675-689.

3516. P.J. Sansonetti, J. Mounier, M.C. Prevost, R.M. Mege, “Cadherin expression is required for the spread of Shigella flexneri between epithelial cells,” Cell 76(11 March 1994):829-839.

3517. P.J. Sansonetti, C. Egile, “Molecular bases of epithelial cell invasion by Shigella flexneri,” Antonie Van Leeuwenhoek 74(November 1998):191-197.

3518. K. Thirumalai, K.S. Kim, A. Zychlinsky, “IpaB, a Shigella flexneri invasin, colocalizes with interleukin-1 beta-converting enzyme in the cytoplasm of macrophages,” Infect. Immun. 65(February 1997):787-793.

3519. C. De Geyter, R. Wattiez, P. Sansonetti, P. Falmagne, J.M. Ruysschaert, C. Parsot, V. Cabiaux, “Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane,” Eur. J. Biochem. 267(September 2000):5769-5776.

3520. Y. Rikihisa, S. Ito, “Intracellular localization of Rickettsia tsutsugamushi in polymorphonuclear leukocytes,” J. Exp. Med. 150(19 September 1979):703-708.

3521. N. Teysseire, J.A. Boudier, D. Raoult, “Rickettsia conorii entry into Vero cells,” Infect. Immun. 63(January 1995):366-374.

3522. H.H. Winkler, E.T. Miller, “Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells,” Infect. Immun. 38(October 1982):109-113.

3523. D.M. Ojcius, M. Thibon, C. Mounier, A. Dautry-Varsat, “pH and calcium dependence of hemolysis due to Rickettsia prowazekii: comparison with phospholipase activity,” Infect. Immun. 63(August 1995):3069-3072.

3524. B.F. Hall, “Trypanosoma cruzi: mechanisms for entry into host cells,” Semin. Cell Biol. 4(October 1993):323-333.

3525. Steffen Stenger et al, “An Antimicrobial Activity of Cytolytic T Cells Mediated by Granulysin,” Science 282(2 October 1998):121-125.

3526. V. Ley, E.S. Robbins, V. Nussenzweig, N.W. Andrews, “The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments,” J. Exp. Med. 171(1 February 1990):401-413.

3527. N.W. Andrews, M.B. Whitlow, “Secretion by Trypanosoma cruzi of a hemolysin active at low pH,” Mol. Biochem. Parasitol. 33(15 March 1989):249-256.

3528. B.F. Hall, P. Webster, A.K. Ma, K.A. Joiner, N.W. Andrews, “Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm,” J. Exp. Med. 176(1 August 1992):313-325.

3529. M. Rathman, N. Jouirhi, A. Allaoui, P. Sansonetti, C. Parsot, G. Tran Van Nhieu, “The development of a FACS-based strategy for the isolation of Shigella flexneri mutants that are deficient in intercellular spread,” Mol. Microbiol. 35(March 2000):974-990.

3530. D.L. Clemens, M.A. Horwitz, “Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited,” J. Exp. Med. 181(1995):257-270.

3531. Matthew J. Fenton, Mary W. Vermeulen, “Immunopathology of Tuberculosis: Roles of Macrophages and Monocytes,” Infect. Immun. 64(March 1996):683-690.

3532. R.A. Fratti, I. Vergne, J. Chua, J. Skidmore, V. Deretic, “Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block,” Electrophoresis 21(October 2000):3378-3385.

3533. J. Chan, H.E. Kaufmann, Immune Mechanisms of Protection: From Tuberculosis Pathogenesis, Protection, and Control, ASM Press, Washington DC, 1994.

3534. P. D’Arcy Hart, M.R. Young, A.H. Gordon, K.H. Sullivan, “Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis,” J. Exp. Med. 166(1987):933-946.

3535. G. Ferrari, H. Langen, M. Naito, J. Pieters, “A coat protein on phagosomes involved in the intracellular survival of mycobacteria,” Cell 97(14 May 1999):435-447; John Gatfield, Jean Pieters, “Essential Role for Cholesterol in Entry of Mycobacteria into Macrophages,” Science 288(2 June 2000):1647-1650.

3536. M.B. Goren, P. D’Arcy Hart, M.R. Young, J.A. Armstrong, “Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis,” Proc. Natl. Acad. Sci. (USA) 73(July 1976):2510-2514.

3537. A.H. Gordon, P.D. Hart, M.R. Young, “Ammonia inhibits phagosome-lysosome fusion in macrophages,” Nature 286(3 July 1980):79-80; P.D. Hart, M.R. Young, “Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast,” J. Exp. Med. 174(1 October 1991):881-889.

3538. M.B. Goren, A.E. Vatter, J. Fiscus, “Polyanionic agents as inhibitors of phagosome-lysosome fusion in cultured macrophages: evolution of an alternative interpretation,” J. Leukocyte Biol. 41(1987):111-121.

3539. J. Slots, M.A. Tabman, Contemporary Oral Microbiology and Immunology, Mosby Yearbook, Chicago, IL, 1992.

3540. “Project TB: Mycobacterium tuberculosis and its Host Cell, the Macrophage”;

3541. N. Fujiwara, “Distribution of antigenic glycolipids among Mycobacterium tuberculosis strains and their contribution to virulence,” Kekkaku 72(April 1997):193-205; Kekkaku 72(June 1997):423 (erratum). In Japanese.

3542. M.B. Goren, A.E. Vatter, J. Fiscus, “Polyanionic agents do not inhibit phagosome-lysosome fusion in cultured macrophages,” J. Leukoc. Biol. 41(February 1987):122-129.

3543. D.M. Zuckman, J.B. Hung, C.R. Roy, “Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth,” Mol. Microbiol. 32(June 1999):990-1001.

3544. Z.A. Malik, G.M. Denning, D.J. Kusner, “Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages,” J. Exp. Med. 191(17 January 2000):287-302.

3545. S. Sturgill-Koszycki, P.H. Schlesinger, P. Chakraborty, P.L. Haddix, H.L. Collins, A.K. Fok, R.D. Allen, S.L. Gluck, J. Heuser, D.G. Russell, “Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase,” Science 263(4 February 1994):678-681, 637-639 (comment); Science 263(11 March 1994):1359 (erratum).

3546. F. Garcia-del Portillo, “Interaction of Salmonella with lysosomes of eukaryotic cells,” Microbiologia 12(June 1996):259-266.

3547. L.M. Crowe, B.J. Spargo, T. Ioneda, B.L. Beaman, J.H. Crowe, “Interaction of cord factor (alpha, alpha’-trehalose-6,6’-dimycolate) with phospholipids,” Biochim. Biophys. Acta 1194(24 August 1994):53-60.

3548. C. Van Der Meer, F.M. Hofhuis, J.M. Willers, “Delayed-type hypersensitivity and acquired cellular resistance in mice immunized with killed Listeria monocytogenes and adjuvants,” Immunology 37(May 1979):77-82.

3549. C.A. Brown, I.N. Brown, V.S. Sljivic, “Phagosome/lysosome fusion: a possible prerequisite for the enhancement of antibody responses in vitro by BCG, Mycobacterium leprae and Corynebacterium parvum,” Parasite Immunol. 1(Winter 1979):309-316.

3550. E. Ivanova, V. Dimov, S. Bachev, J. Gumpert, “Chemiluminescent activity of macrophages during phagocytosis of different bacterial forms,” Acta Microbiol. Bulg. 29(1993):39-46.

3551. M.A. Horwitz, “The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes,” J. Exp. Med. 158(1 December 1983):2108-2126.

3552. G. Segal, H.A. Shuman, “How is the intracellular fate of the Legionella pneumophila phagosome determined?” Trends Microbiol. 6(July 1998):253-255.

3553. J.P. Vogel, R.R. Isberg, “Cell biology of Legionella pneumophila,” Curr. Opin. Microbiol. 2(February 1999):30-34.

3554. P. Brouqui, D. Raoult, “Proteinase K-sensitive and filterable phagosome-lysosome fusion inhibiting factor in Afipia felis,” Microb. Pathog. 15(September 1993):187-195; H. Le Pocher, P. Brouqui, D. Raoult, “Killing kinetics of intracellular Afipia felis treated with amikacin,” J. Antimicrob. Chemother. 42(December 1998):825-829.

3555. L.L. Steed, M. Setareh, R.L. Friedman, “Intracellular survival of virulent Bordetella pertussis in human polymorphonuclear leukocytes,” J. Leukoc. Biol. 50(October 1991):321-330; L.L. Steed, E.T. Akporiaye, R.L. Friedman, “Bordetella pertussis induces respiratory burst activity in human polymorphonuclear leukocytes,” Infect. Immun. 60(May 1992):2101-2105.

3556. J. Pizarro-Cerda, E. Moreno, V. Sanguedolce, J.L. Mege, J.P. Gorvel, “Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments,” Infect. Immun. 66(May 1998):2387-2392.

3557. J. Pizarro-Cerda, M. Desjardins, E. Moreno, S. Akira, J.P. Gorvel, “Modulation of endocytosis in nuclear factor IL-6(-/-) macrophages is responsible for a high susceptibility to intracellular bacterial infection,” J. Immunol. 162(15 March 1999):3519-3526.

3558. G.N. Arenas, A.S. Staskevich, A. Aballay, L.S. Mayorga, “Intracellular trafficking of Brucella abortus in J774 macrophages,” Infect. Immun. 68(July 2000):4255-4263.

3559. A. Naroeni, N. Jouy, S. Ouahrani-Bettache, J.P. Liautard, F. Porte, “Brucella suis-impaired specific recognition of phagosomes by lysosomes duel to phagosomal membrane modifications,” Infect. Immun. 69(January 2001):486-493.

3560. L.G. Eissenberg, P.B. Wyrick, “Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles,” Infect. Immun. 32(May 1981):889-896; L.G. Eissenberg, P.B. Wyrick, C.H. Davis, J.W. Rumpp, “Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion,” Infect. Immun. 40(May 1983):741-751.

3561. H.I. Gokce, G. Ross, Z. Woldehiwet, “Inhibition of phagosome-lysosome fusion in ovine polymorphonuclear luecocytes by Ehrlichia (Cytoecetes) phagocytophila,” J. Comp. Pathol. 120(May 1999):369-381.

3562. E. Weidner, L.D. Sibley, “Phagocytized intracellular microsporidian blocks phagosome acidification and phagosome-lysosome fusion,” J. Protozool. 32(May 1985):311-317.

3563. J.S. Abramson, J.C. Lewis, D.S. Lyles, K.A. Heller, E.L. Mills, D.A. Bass, “Inhibition of neutrophil lysosome-phagosome fusion associated with influenza virus infection in vitro. Role in depressed bactericidal activity,” J. Clin. Invest. 69(June 1982):1393-1397.

3564. W.W. Laegreid, H.D. Liggitt, R.M. Silflow, J.R. Evermann, S.M. Taylor, R.W. Leid, “Reversal of virus-induced alveolar macrophage bactericidal dysfunction by cyclooxygenase inhibition in vitro,” J. Leukoc. Biol. 45(April 1989):293-300.

3565. C. Alvarez-Dominguez, R. Roberts, P.D. Stahl, “Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome,” J. Cell Sci. 110(March 1997):731-743.

3566. T. Rudel, A. Schmid, R. Benz, H.A. Kolb, F. Lang, T.F. Meyer, “Modulation of Neisseria porin (PorB) by cytosolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis,” Cell 85(3 May 1996):391-402.

3567. B.L. Beaman, L. Beaman, “Nocardia species: host-parasite relationships,” Clin. Microbiol. Rev. 7(April 1994):213-264; C. Davis-Scibienski, B.L. Beaman, “Interaction of Nocardia asteroides with rabbit alveolar macrophages: effect of growth phase and viability on phagosome-lysosome fusion,” Infect. Immun. 29(July 1980):24-29.

3568. C.D. McClure, N.L. Schiller, “Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo,” Curr. Microbiol. 33(August 1996):109-117.

3569. J. Mauel, “Macrophage activation and effector mechanisms against microbes,” Adv. Exp. Med. Biol. 155(1982):675-686. Also: J. Mauel, “Mechanisms of intracellular microbicide,” Bull. Eur. Physiopathol. Respir. 19(March-April 1983):115-122. In French.

3570. K.J. Kim, Y.E. Na, K.W. Jeon, “Bacterial endosymbiont-derived lipopolysaccharides and a protein on symbiosome membranes in newly infected amoebas and their roles in lysosome-symbiosome fusion,” Infect. Immun. 62(January 1994):65-71.

3571. L. Turner, C. Scotton, R. Negus, F. Balkwill, “Hypoxia inhibits macrophage migration,” Eur. J. Immunol. 29(July 1999):2280-2287.

3572. M. Iriarte, G.R. Cornelis, “YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells,” Mol. Microbiol. 29(August 1998):915-929.

3573. Robert A. Freitas Jr., “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell,” Artificial Cells, Blood Substitutes, and Immobil. Biotech. 26(1998):411-430; (abstract); (paper). See also: Robert A. Freitas Jr., “Respirocytes: High Performance Artificial Nanotechnology Red Cells,” Nanotechnology Magazine 2(October 1996):1, 8-13.

3574. I.S. Longmuir, “Control of non-respiratory metabolism by tissue oxygen,” Adv. Exp. Med. Biol. 222(1988):169-173.

3575. P.H. Sporn, T.M. Murphy, M. Peters-Golden, “Complex effects of in vitro hyperoxia on alveolar macrophage arachidonic acid metabolism,” Am. J. Respir. Cell Mol. Biol. 2(January 1990):81-90.

3576. T.A. Raffin, L.M. Simon, D. Braun, J. Theodore, E.D. Robin, “Impairment of phagocytosis by moderate hyperoxia (40 to 60 percent oxygen) in lung macrophages,” Lab. Invest. 42(June 1980):622-626.

3577. N. Suttorp, L.M. Simon, “Decreased bactericidal function and impaired respiratory burst in lung macrophages after sustained in vitro hyperoxia,” Am. Rev. Respir. Dis. 128(September 1983):486-490.

3578. M.W. Sutherland, M. Glass, J. Nelson, Y. Lyen, H.J. Forman, “Oxygen toxicity: loss of lung macrophage function without metabolite depletion,” J. Free Radic. Biol. Med. 1(1985):209-214.

3579. H.J. Forman, D.C. Skelton, “Protection of alveolar macrophages from hyperoxia by gamma-glutamyl transpeptidase,” Am. J. Physiol. 259(August 1990):L102-L107.

3580. C.D. Puglia, S.R. Powell, “Inhibition of cellular antioxidants: a possible mechanism of toxic cell injury,” Environ. Health Perspect. 57(August 1984):307-311.

3581. S.R. Powell, C.D. Puglia, “Effect of inhibition of glutathione reductase by carmustine on central nervous system oxygen toxicity,” J. Pharmacol. Exp. Ther. 240(January 1987):111-117.

3582. W.J. Wang, X.P. Ho, Y.L. Yan, T.H. Yan, C.L. Li, “Intrasynaptosomal free calcium and nitric oxide metabolism in central nervous system oxygen toxicity,” Aviat. Space Environ. Med. 69(June 1998):551-555.

3583. M.J. Hardonk, F.W. Dijkhuis, C.E. Hulstaert, J. Koudstaal, “Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation,” J. Leukoc. Biol. 52(September 1992):296-302.

3584. K. Rhoads, C.L. Sanders, “Selective injury to rat liver Kupffer cells caused by beryllium phosphate: an explanation of reticuloendothelial blockade,” Br. J. Exp. Pathol. 62(1981):383-392.

3585. N. Van Rooijen, A. Sanders, “Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications,” J. Immunol. Methods 174(14 September 1994):83-93.

3586. M.J. Hill, “A staphylococcal aggressin,” J. Med. Microbiol. 1(August 1968):31-43.

3587. G.C. Fossati, D. Fumarola, E. Cerra, E. Cavalieri, “Inhibition of leukocyte migration by a staphylococcal aggressin,” Riv. Emoter Immunoematol. 16(1969):119-127. In Italian.

3588. E. Cerra, D. Fumarola, G.C. Fossati, M. Ruberto, “Effects of a new staphylococcal aggressin on the phagocytic activity of neutrophils,” Riv. Emoter Immunoematol. 16(1969):133-147. In Italian.

3589. D. Fumarola, “Blastoid transformation of lymphocytes by staphylococcal aggressin,” Z. Immunitatsforsch. Allerg. Klin. Immunol. 140(1970):313-316.

3590. R. Parton, “Review of the biology of Bordetella pertussis,” Biologicals 27(June 1999):71-76.

3591. L.W. Wannamaker, “Streptococcal toxins,” Rev. Infect. Dis. 5(September-October 1983):S723-S732.

3592. S. Gupta, R.K. Gupta, D.R. Varma, “Studies on the toxic effects of streptolysin ‘O’: effect on the contractility of isolated and intact mammalian and amphibian heart,” Indian J. Physiol. Pharmacol. 20(July-September 1976):164-167.

3593. T. Tanigawa, J. Suzuki, T. Ueta, T. Katsumoto, Y. Tanaka, “Different sensitivity to streptolysin-O of cells in macrophage lineage,” Microbiol. Immunol. 40(1996):81-84.

3594. Y. Kamio, A. Rahman, H. Nariya, T. Ozawa, K. Izaki, “The two Staphylococcal bi-component toxins, leukocidin and gamma-hemolysin, share one component in common,” FEBS Lett. 321(19 April 1993):15-18.

3595. E. Gouaux, M. Hobaugh, L. Song, “Alpha-hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure,” Protein Sci. 6(December 1997):2631-2635.

3596. M. Ferreras, F. Hoper, M. Dalla Serra, D.A. Colin, G. Prevost, G. Menestrina, “The interaction of Staphylococcus aureus bi-component gamma-hemolysins and leucocidins with cells and lipid membranes,” Biochim. Biophys. Acta 1414(11 November 1998):108-126.

3597. S. Szmigielski, G. Provost, H. Monteil, D.A. Colin, J. Jeljaszewicz, “Leukocidal toxins of staphylococci,” Zentralbl. Bakteriol. 289(April 1999):185-201.

3598. W. Scharmann, “Formation and isolation of leucocidin from Pseudomonas aeruginosa,” J. Gen. Microbiol. 93(April 1976):283-291.

3599. M. Pollack, S.E. Anderson Jr., “Toxicity of Pseudomonas aeruginosa exotoxin A for human macrophages,” Infect. Immun. 19(March 1978):1092-1096.


Last updated on 16 April 2004