Nanomedicine, Volume IIA: Biocompatibility

© 2003 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003


References 4100-4199

4100. J. Anthony Ware, Barry S. Coller, “Chapter 119. Platelet morphology, biochemistry, and function,” in Ernest Beutler, Marshall A. Lichtman, Barry S. Coller, Thomas J. Kipps, eds., William’s Hematology, Fifth Edition, McGraw-Hill, New York, 1995, pp. 1161-1201.

4101. J.L. Moake, N.A. Turner, N.A. Stathopoulos, L. Nolasco, J.D. Hellums, “Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin,” Blood 71(1988):1366-1374.

4102. Y. Ikeda, M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, K. Sakai, Z.M. Ruggeri, “The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress,” J. Clin. Invest. 87(1991):1234-1240.

4103. Z.M. Ruggeri, “Mechanisms of shear-induced platelet adhesion and aggregation,” Thromb. Haemostasis 70(1993):119-123.

4104. M.H. Kroll, J.D. Hellums, Z. Guo, W. Durante, K. Razdan, J.K. Hrbolich, A.I. Schafer, “Protein kinase C is activated in platelets subjected to pathological shear stress,” J. Biol. Chem. 268(1993):3520-3524.

4105. Y. Ikeda, M. Murata, Y. Araki, K. Watanabe, Y. Ando, I. Itagaki, Y. Mori, M. Ichitani, K. Sakai, “Importance of fibrinogen and platelet membrane glycoprotein IIb/IIIa in shear-induced platelet aggregation,” Thromb. Res. 51(1988):157-163.

4106. Suraj G. Kamat, Alan D. Michelson, Stephen E. Benoit, Joel L. Moake, Damodara Rajasekhar, J. David Hellums, Michael H. Kroll, Andrew I. Schafer, “Fibrinolysis Inhibits Shear Stress-Induced Platelet Aggregation,” Circulation 92(15 September 1995):1399-1407.

4107. K. Konstantopoulos, T.W. Chow, N.A. Turner, J.D. Hellums, “Shear-stress-induced binding of von Willebrand factor to platelets,” Biorheology 34(January-February 1997):57-71.

4108. J.L. Moake, N.A. Turner, N.A. Stathopoulos, L. Nolasco, J.D. Hellums, “Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation,” J. Clin. Invest. 78(1986):1456-1461.

4109. B. K. Konstantopoulos, K.K. Wu, M.M. Udden, E.I. Banez, S.J. Shattil, J.D. Hellums, “Flow cytometric studies of platelet responses to shear stress in whole blood,” Biorheology 32(January-February 1995):73-93.

4110. P. Tandon, S.L. Diamond, “Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow,” Biophys. J. 73(November 1997):2819-2835.

4111. H. Ouimet, J. Loscalzo, “Reciprocating autocatalytic interactions between platelets and the activation system,” Thromb. Res. 70(1 June 1993):355-364.

4112. Harry L. Goldsmith, Fiona A. McIntosh, Jason Shahin, Mony M. Frojmovic, ‘Time and force dependence of the rupture of glycoprotein IIb-IIIa-fibrinogen bonds between latex spheres,” Biophys. J. 78(March 2000):1195-1206;

4113. M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, P.K. Hansma, ‘Measuring the viscoelastic properties of human platelets with the atomic force microscope,” Biophys. J. 70(January 1996):556-567.

4114. J.J. Van Rybroek, J.D. Olson, C.P. Burns, “White cell fragmentation after therapeutic leukapheresis for acute leukemia,” Transfusion 27(July-August 1987):353-355.

4115. J. Hammerstrom, “Spurious platelet counts in acute leukaemia with DIC due to cell fragmentation,” Clin. Lab. Haematol. 14(1992):239-243.

4116. F. Moazzam, F.A. DeLano, B.W. Zweifach, G.W. Schmid-Schonbein, “The leukocyte response to fluid stress,” Proc. Natl. Acad. Sci. (USA) 94(13 May 1997):5338-5343.

4117. K.L. Ohashi, D.K.L. Tung, J.M. Wilson, B.W. Zweifach, G.W. Schmid-Schonbein, “Transvascular and interstitial migration of neutrophils in rat mesentery,” Microcirculation 3(June 1996):199-210.

4118. R. Alon, S. Chen, R. Fuhlbrigge, K.D. Puri, T.A. Springer, “The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes,” Proc. Natl. Acad. Sci. (USA) 95(29 September 1998):11631-11636; M.B. Lawrence, G.S. Kansas, E.J. Kunkel, K. Ley, “Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E),” J. Cell Biol. 136(10 February 1997):717-727, J. Cell Biol. 137(7 April 1997):261 (erratum).

4119. P.H. Reinhardt, P. Kubes, “Differential leukocyte recruitment from whole blood via endothelial adhesion molecules under shear conditions,” Blood 92(15 December 1998):4691-4699.

4120. S.D. House, H.H. Lipowsky, “In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat,” Circ. Res. 63(September 1988):658-668.

4121. S. Gallik, S. Usami, K.M. Jan, S. Chien, “Shear stress-induced detachment of human polymorphonuclear leukocytes from endothelial cell monolayers,” Biorheology 26(1989):823-834.

4122. S. Chen, T.A. Springer, “An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear,” J. Cell Biol. 144(11 January 1999):185-200.

4123. T.G. van Kooten, J.M. Schakenraad, H.C. van der Mei, H.J. Busscher, “Influence of glutaraldehyde fixation of cells adherent to solid substrata on their detachment during exposure to shear stress,” Cell Biophys. 20(April-June 1992):149-159.

4124. A. Ludwig, G. Kretzmer, K. Schugerl, “Determination of a ‘critical shear stress level’ applied to adherent mammalian cells,” Enzyme Microb. Technol. 14(March 1992):209-213.

4125. M.S. Shive, M.L. Salloum, J.M. Anderson, “Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections,” Proc. Natl. Acad. Sci. (USA) 97(6 June 2000):6710-6715.

4126. Krishnan K. Chittur, L.V. McIntire, R.R. Rich, “Shear stress effects on human T cell function,” Biotechnol. Progr. 4(1988):89-96.

4127. T.S. Bewitz, L.V. McIntire, R.R. Martin, H.D. Sybers, “Enzyme release and morphological changes in leukocytes induced by mechanical trauma,” Blood Cells 5(August 1979):499-512.

4128. M. Okuyama, J. Kambayashi, M. Sakon, M. Monden, “LFA-1/ICAM-3 mediates neutrophil homotypic aggregation under fluid shear stress,” J. Cell. Biochem. 60(15 March 1996):550-559.

4129. Z. Zhang, M.A. Ferenczi, A.C. Lush, C.R. Thomas, “A novel micromanipulation technique for measuring the bursting strength of single mammalian cells,” Appl. Microbiol. Biotechnol. 36(1991):208-210.

4130. M.J. Pearson, H.H. Lipowsky, “Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 279(October 2000):H1460-H1471.

4131. M. Hultin, R. Savonen, T. Olivecrona, “Chylomicron metabolism in rats: lipolysis, recirculation of triglyceride-derived fatty acids in plasma FFA, and fate of core lipids as analyzed by compartmental modeling,” J. Lipid Res. 37(May 1996):1022-1036.

4132. F. Karpe, T. Olivecrona, A. Hamsten, M. Hultin, “Chylomicron/chylomicrons remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicrons remnants,” J. Lipid Res. 38(May 1997):949-961.

4133. Y. Park, B.D. Damron, J.M. Miles, W.S. Harris, “Measurement of human chylomicrons triglyceride clearance with a labeled commercial lipid emulsion,” Lipids 36(February 2001):115-120.

4134. Eliot R. Clarke, Eleanor Linton Clarke, “Observations on Changes in Blood Vascular Endothelium in the Living Animal,” Amer. J. Anat. 57(1935):385-438.

4135. M.E. Smith, W.L. Ford, “The recirculating lymphocyte pool of the rat: a systematic description of the migratory behavior of recirculating lymphocytes,” Immunology 49(1983):83-94.

4136. C. Johnson-Leger, M. Aurrand-Lions, B.A. Imhof, “The parting of the endothelium: miracle, or simply a junctional affair?” J. Cell Sci. 113(March 2000):921-933.

4137. A.R. Burns, D.C. Walker, E.S. Brown, L.T. Thurmon, R.A. Bowden, C.R. Keese, S.I. Simon, M.L. Entman, C.W. Smith, “Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners,” J. Immunol. 159(15 September 1997):2893-2903; A.R. Burns, R.A. Bowden, S.D. MacDonell, D.C. Walker, T.O. Odebunmi, E.M. Donnachie, S.I. Simon, M.L. Entman, C.W. Smith, “Analysis of tight junctions during neutrophil transendothelial migration,” J. Cell Sci. 113(January 2000):45-57.

4138. B.Z. Garty, S. Berliner, E. Liberman, Y.L. Danon, “Cerebrospinal fluid leukocyte aggregation in meningitis,” Pediatr. Infect. Dis. J. 16(July 1997):647-651; I.C. Michelow, M. Nicol, C. Tiemessen, C. Chezzi, J.M. Pettifor, “Value of cerebrospinal fluid leukocyte aggregation in distinguishing the causes of meningitis in children,” Pediatr. Infect. Dis. J. 19(January 2000):66-72.

4139. M. Kassirer, D. Zeltser, N. Maharshak, R. Rotstein, O. Rogowsky, I. Shapira, N. Arber, A.S. Berliner, “Reduced leukocyte adhesiveness in response to viral versus nonviral infection/inflammation,” Infection 29(March-April 2001):87-92.

4140. M. Silvestrini, A. Pietroiusti, A. Magrini, M. Matteis, S. Carta, G. Bernardi, A. Galante, “Leukocyte aggregation in patients with a previous cerebral ischemic event,” Stroke 25(July 1994):1390-1392; M. Silvestrini, A. Pietroiusti, E. Troisi, L. Franceschelli, P. Piccolo, A. Magrini, G. Bernardi, A. Galante, “Leukocyte count and aggregation during the evolution of cerebral ischemic injury,” Cerebrovasc. Dis. 8(November-December 1998):305-309.

4141. I. Shapira, R. Rotstein, R. Fusman, B. Gluzman, A. Roth, G. Keren, D. Avitzour, N. Arber, S. Berliner, “Combined leukocyte and erythrocyte aggregation in patients with acute myocardial infarction,” Int. J. Cardiol. 78(May 2001):299-305.

4142. S. Berliner, Z. Fishelson, S. Bruhis, H. Kaufman, J. Pinhas, M. Aronson, “The phenomenon of leukergy: induction and detection of leukocyte aggregation in whole human blood,” J. Lab. Clin. Med. 109(May 1987):575-582.

4143. R. Fadilah, S. Berliner, I. Yuli, D. Weinberger, M. Nili, M. Ben-Bassat, E. Sternberg, J. Pinkhas, M. Aronson, “Instability of leukocyte aggregation: lack of evidence for leukoembolization during various states of inflammation,” Inflammation 12(October 1988):425-432.

4144. A.S. Berliner et al, “Combined leukocyte and erythrocyte aggregation in the peripheral venous blood during sepsis. An indication of commonly shared adhesive protein(s),” Int. J. Clin. Lab. Res. 30(2000):27-31.

4145. O. Ragowski et al, “Correlated expression of adhesive properties for both white and red blood cells during inflammation,” Biorheology 37(2000):361-370.

4146. H. Weidenbach, K. Sedlarik, G. Reimann, J. Wilde, “Light and electron microscopy studies on experimental arterial thrombosis in dwarf swine,” Z. Exp. Chir. 11(4 August 1978):230-237. In German.

4147. M. Schaldach, “Bioelectric energy sources for cardiac pacing,” Ann. N.Y. Acad. Sci. 167(October 1969):1016-1024, 1025 (discussion).

4148. W.R. Panje, N. Sadeghi, “Endoscopic and electroporation therapy of paranasal sinus tumors,” Am. J. Rhinol. 14(May-June 2000):187-191; M. Cemazar, C.S. Parkins, A.L. Holder, D.J. Chaplin, G.M. Tozer, G. Sersa, “Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy,” Br. J. Cancer 84(February 2001):565-570.

4149. E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J. 1(1982):841-845; I.P. Sugar, E. Neumann, “Stochastic model for electric field-induced membrane pores. Electroporation,” Biophys. Chem. 19(May 1984):211-225.

4150. Jay T. Groves, Steven G. Boxer, Harden M. McConnell, “Electric field-induced critical demixing in lipid bilayer membranes,” Proc. Natl. Acad. Sci. USA 95(February 1998):935-938.

4151. X. Hu, W.M. Arnold, U. Zimmermann, “Alternations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells,” Biochim. Biophys. Acta 1021(29 January 1990):191-200.

4152. D.B. Lyle, R.D. Ayotte, A.R. Sheppard, W.R. Adey, “Suppression of T-lymphocyte cytotoxicity following exposure to 60-Hz sinusoidal electric fields,” Bioelectromagnetics 9(1988):303-313.

4153. S.F. Cleary, “A review of in vitro studies: low-frequency electromagnetic fields,” Am. Ind. Hyg. Assoc. J. 54(April 1993):178-185.

4154. K.K. Murthy, W.R. Rogers, H.D. Smith, “Initial studies on the effects of combined 60 Hz electric and magnetic field exposure on the immune system of nonhuman primates,” Bioelectromagnetics 3(1995):93-102.

4155. C. Eichwald, J. Walleczek, “Activation-dependent and biphasic electromagnetic field effects: model based on cooperative enzyme kinetics in cellular signaling,” Bioelectromagnetics 17(1996):427-435.

4156. L.A. Rosen, I. Barber, D.B. Lyle, “A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes,” Bioelectromagnetics 19(1998):123-127.

4157. P. Boscolo, A. Bergamaschi, M.B. Di Sciascio, F. Benvenuti, M. Reale, F. Di Stefano, P. Conti, M. Di Gioacchino, “Effects of low frequency electromagnetic fields on expression of lymphocyte subsets and production of cytokines of men and women employed in a museum,” Sci. Total Environ. 270(10 April 2001):13-20.

4158. J.E. Morris, R.D. Phillips, “Effects of 60 Hz-electric fields on specific humoral and cellular components of the immune system,” Bioelectromagnetics 3(1982):431-437.

4159. I. Nishimura, K. Yamazaki, T. Shigemitsu, T. Negishi, T. Sasano, “Linearly and circularly polarized, 50 Hz magnetic fields did not alter intracellular calcium in rat immune cells,” Ind. Health 37(July 1999):289-299.

4160. H. Tuschl, G. Neubauer, H. Garn, K. Duftschmid, N. Winker, H. Brusl, “Occupational exposure to high frequency electromagnetic fields and its effect on human immune parameters,” Int. J. Occup. Med. Environ. Health 12(1999):239-251.

4161. M.J. Politis, M.F. Zanakis, “Treatment of the damaged rat hippocampus with a locally applied electric field,” Exp. Brain Res. 71(1988):223-226.

4162. L.C. Kloth, J.M. McCulloch, “Promotion of wound healing with electrical stimulation,” Adv. Wound Care 9(September-October 1996):42-45.

4163. D.L. Brower, J.R. McIntosh, “The effects of applied electric fields on Micrasterias. I. Morphogenesis and the pattern of cell wall deposition,” J. Cell Sci. 42(April 1980):261-277.

4164. J. Adler, W. Shi, “Galvanotaxis in bacteria,” Cold Spring Harb. Symp. Quant. Biol. 53(1988):23-25 (Pt. 1); A.M. Rajnicek, “Bacterial galvanotropism: mechanisms and applications,” Sci. Prog. 77(1993-94):139-151; A.M. Rajnicek, C.D. McCaig, N.A. Gow, “Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth,” J. Bacteriol. 176(February 1994):702-713; W. Shi, B.A. Stocker, J. Adler, “Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis,” J. Bacteriol. 178(February 1996):1113-1119.

4165. P.H. Chao, R. Roy, R.L. Mauck, W. Liu, W.B. Valhmu, C.T. Hung, “Chondrocyte translocation response to direct current electric fields,” J. Biomech. Eng. 122(June 2000):261-267.

4166. P.C. Chang, G.I. Sulik, H.K. Soong, W.C. Parkinson, “Galvanotropic and galvanotaxic responses of corneal endothelial cells,” J. Formos. Med. Assoc. 95(August 1996):623-627.

4167. M.S. Cooper, M. Schliwa, “Transmembrane Ca2+ fluxes in the forward and reversed galvanotaxis of fish epidermal cells,” Prog. Clin. Biol. Res. 210(1986):311-318.

4168. P.W. Luther, H.B. Peng, J.J. Lin, “Changes in cell shape and actin distribution induced by constant electric fields,” Nature 303(5-11 May 1983):61-64; G.L. Sulik, H.K. Soong, P.C. Chang, W.C. Parkinson, S.G. Elner, V.M. Elner, “Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture,” Acta Ophthalmol (Copenhagen) 70(February 1992):115-122; M. Zhao, A. Agius-Fernandez, J.V. Forrester, C.D. McCaig, “Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent,” J. Cell Sci. 109(June 1996):1405-1414.

4169. H. Gruler, “Cell movement and symmetry of the cellular environment,” Z. Naturforsch C 43(September-October 1988):754-764.

4170. H.K. Soong, W.C. Parkinson, S. Bafna, G.L. Sulik, S.C. Huang, “Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields,” Invest. Ophthalmol. Vis. Sci. 31(November 1990):2278-2282.

4171. R. Nuccitelli, C.A. Erickson, “Embryonic cell motility can be guided by physiological electric fields,” Exp. Cell Res. 147(August 1983):195-201; C.A. Erickson, R. Nuccitelli, “Embryonic fibroblast motility and orientation can be influenced by physiological electric fields,” J. Cell Biol. 98(January 1984):296-307; H.K. Soong, W.C. Parkinson, G.L. Sulik, S. Bafna, “Effects of electric fields on cytoskeleton of corneal stromal fibroblasts,” Curr. Eye Res. 9(September 1990):893-901; M.J. Brown, L.M. Loew, “Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent,” J. Cell Biol. 127(October 1994):117-128.

4172. B. Rapp, A. de Boisfleury-Chevance, H. Gruler, “Galvanotaxis of human granulocytes. Dose-response curve,” Eur. Biophys. J. 16(1988):313-319; K. Franke, H. Gruler, “Galvanotaxis of human granulocytes: electric field jump studies,” Eur. Biophys. J. 18(1990):335-346; H. Gruler, K. Franke, “Automatic control and directed cell movement. Novel approach for understanding chemotaxis, galvanotaxis, galvanotropism,” Z. Naturforsch. C 45(November-December 1990):1241-1249.

4173. K.Y. Nishimura, R.R. Isseroff, R. Nuccitelli, “Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds,” J. Cell Sci. 109(January 1996):199-207; D.M. Sheridan, R.R. Isseroff, R. Nuccitelli, “Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules,” J. Invest. Dermatol. 106(April 1996):642-646; G.P. Obedencio, R. Nuccitelli, R.R. Isseroff, “Involucrin-positive keratinocytes demonstrate decreased migration speed but sustained directional migration in a DC electric field,” J. Invest. Dermatol. 113(November 1999):851-855; H. Gruler, R. Nuccitelli, “The galvanotaxis response mechanism of keratinocytes can be modeled as a proportional controller,” Cell Biochem. Biophys. 33(2000):33-51.

4174. C.D. McCaig, P.J. Dover, “Raised cyclic-AMP and a small applied electric field influence differentiation, shape, and orientation of single myoblasts,” Dev. Biol. 158(July 1993):172-182.

4175. H. Gruler, R. Nuccitelli, “Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis,” Cell Motil. Cytoskeleton 19(1991):121-133; R. Nuccitelli, T. Smart, J. Ferguson, “Protein kinases are required for embryonic neural crest cell galvanotaxis,” Cell Motil. Cytoskeleton 24(1993):54-66.

4176. C.D. McCaig, “Studies on the mechanism of embryonic frog nerve orientation in a small applied electric field,” J. Cell Sci. 93(August 1989):723-730; C.D. McCaig, R. Stewart, “The effects of melanocortins and electrical fields on neuronal growth,” Exp. Neurol. 116(May 1992):172-179; R.S. Bedlack Jr., M. Wei, L.M. Loew, “Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth,” Neuron 9(September 1992):393-403; L. Erskine, R. Stewart, C.D. McCaig, “Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations,” J. Neurobiol. 26(April 1995):523-536; L. Erskine, C.D. McCaig, “The effects of lyotropic anions on electric field-induced guidance of cultured frog nerves,” J. Physiol. 486(1 July 1995):229-236; S. Britland, C. McCaig, “Embryonic Xenopus neurites integrate and respond to simultaneous electrical and adhesive guidance cues,” Exp. Cell Res. 226(10 July 1996):31-38; A.M. Rajnicek, K.R. Robinson, C.D. McCaig, “The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge,” Dev. Biol. 203(15 November 1998):412-423; A.M. Palmer, M.A. Messerli, K.R. Robinson, “Neuronal galvanotropism is independent of external Ca(2+) entry or internal Ca(2+) gradients,” J. Neurobiol. 45(October 2000):30-38.

4177. J. Ferrier, S.M. Ross, J. Kanehisa, J.E. Aubin, “Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field,” J. Cell Physiol. 129(December 1986):283-288.

4178. S. Erhan, E.A. Franko, “Galvanotropy of protozoa,” Z. Biol. 116(June 1970):382-385; R.D. Hinrichsen, Y. Saimi, C. Kung, “Mutants with altered Ca2+-channel properties in Paramecium tetraurelia: isolation, characterization and genetic analysis,” Genetics 108(November 1984):545-558; T. Ueda, T. Nakagaki, T. Yamada, “Dynamic organization of ATP and birefringent fibrils during free locomotion and galvanotaxis in the plasmodium of Physarum polycephalum,” J. Cell Biol. 110(April 1990):1097-1102; A.H. Van Hoek, V.S. Sprakel, T.A. Van Alen, A.P. Theuvenet, G.D. Vogels, J.H. Hackstein, “Voltage-dependent reversal of anodic galvanotaxis in Nyctotherus ovalis,” J. Eukaryot. Microbiol. 46(July-August 1999):427-433; W. Korohoda, M. Mycielska, E. Janda, Z. Madeja, “Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields,” Cell Motil. Cytoskeleton 45(January 2000):10-26.

4179. S. Blottner, H. Bostedt, K. Mewes, C. Pitra, “Enrichment of bovine X and Y spermatozoa by free-flow electrophoresis,” Zentralbl. Veterinarmed. A 41(August 1994):466-474; Z. Zhang, L. Jin, I. Takenaka, “Galvanotactic response of mouse epididymal sperm: in vitro effects of zinc and diethyldithiocarbamate,” Arch. Androl. 45(September-October 2000):105-110.

4180. H. Gruler, R. Nuccitelli, “New insights into galvanotaxis and other directed cell movements: an analysis of the translocation distribution function,” Prog. Clin. Biol. Res. 210(1986):337-347; M. Schienbein, H. Gruler, “Langevin equation, Fokker-Planck equation and cell migration,” Bull. Math. Biol. 55(May 1993):585-608; M.E. Robert, J.D. Sweeney, “Computer model: investigating role of filopodia-based steering in experimental neurite galvanotropism,” J. Theor. Biol. 188(7 October 1997):277-288.

4181. C.B. Coulter, “The isoelectric point of red blood cells and its relation to agglutination,” J. Gen. Physiol. 3(1920):309-323.

4182. K.M. Jan, S. Chien, “Role of surface electric charge in red blood cell interactions,” J. Gen. Physiol. 61(May 1973):638-654.

4183. S. Chien, K.M. Jan, “Ultrastructural basis of the mechanism of rouleaux formation,” Microvasc. Res. 5(March 1973):155-166.

4184. C.J. van Oss, D.R. Absolom, A.W. Neumann, “Interaction of phagocytes with other blood cells and with pathogenic and nonpathogenic microbes,” Ann. N.Y. Acad. Sci. 416(1983):332-350.

4185. Vincent A. Fischetti, “Streptococcal M Protein,” Sci. Am. 264(June 1991):58-65.

4186. G.H. Markx, Y. Huang, X.F. Zhou, R. Pethig, “Dielectrophoretic characterization and separation of micro-organisms,” Microbiol. 140(1994):585-591.

4187. Ronald Pethig, “A.C. Electrokinetic Manipulation of Bioparticles,” in Richard R.H. Coombs, Dennis W. Robinson, eds., Nanotechnology in Medicine and the Biosciences, Gordon & Breach Publishers, Netherlands, 1996, Chapter 11, pp. 153-168.

4188. H.S. Kage, H. Engelhardt, E. Sackman, “A precision method to measure average viscoelastic parameters of erythrocyte populations,” Biorheology 27(1990):67-78.

4189. P. Marszalek, T.Y. Tsong, “Cell fission and formation of mini cell bodies by high frequency alternating electric field,” Biophys. J. 68(April 1995):1218-1221.

4190. N.G. Stoicheva, S.W. Hui, “Electrofusion of cell-size liposomes,” Biochim. Biophys. Acta 1195(12 October 1994):31-38.

4191. M.J. Lab, “Mechanosensitivity as an integrative system in heart: an audit,” Prog. Biophys. Mol. Biol. 71(1999):7-27.

4192. R. Davies, A.W. Preece, “The electrophoretic mobilities of minerals determined by laser Doppler velocimetry and their relationship with the biological effects of dusts towards macrophages,” Clin. Phys. Physiol. Meas. 4(May 1983):129-140.

4193. S. Tungjitkusolmun, E.J. Woo, H. Cao, J.Z. Tsai, V.R. Vorperian, J.G. Webster, “Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation,” IEEE Trans. Biomed. Eng. 47(January 2000):32-40.

4194. R. Davies, D.M. Griffiths, N.F. Johnson, A.W. Preece, D.C. Livingston, “The cytotoxicity of kaolin towards macrophages in vitro,” Br. J. Exp. Pathol. 65(August 1984):453-466.

4195. R. Allen Bowling, “A Theoretical Review of Particle Adhesion,” in K.L. Mittal, ed., Particles on Surfaces I: Detection, Adhesion, and Removal, Plenum Press, NY, 1988, pp. 129-142.

4196. R.E. Baier, “Selected methods of investigation for blood-contact surfaces,” in E.F. Leonard, V.T. Turitto, L. Vroman, eds., Blood in Contact with Natural and Artificial Surfaces, Ann. N.Y. Acad. Sci. 516(1987):68-77.

4197. D.M. Nelson, A.C. Enders, B.F. King, “Galactosyltransferase activity of the microvillous surface of human placental syncytial trophoblast,” Gynecol. Invest. 8(1977):267-281.

4198. V.A. Krylenkov, K.A. Samoilova, S.V. Levin, “Destructive changes in the outer perimembrane layers (glycocalyx) of Zajdela ascites hepatoma cells under the action of UV radiation,” Tsitologiia 21(May 1979):594-601. In Russian.

4199. D. Vasmant, G. Feldmann, J.L. Fontaine, “Ultrastructural localization of concanavalin A surface receptors on brush-border enterocytes in normal children and during celiac disease,” Pediatr. Res. 16(June 1982):441-445.


Last updated on 16 April 2004