Nanomedicine, Volume IIA: Biocompatibility

© 2003 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003


 

References 600-699

600. P. Clark, P. Connolly, Adam S.G. Curtis, J.A.T. Dow, Chris D.W. Wilkinson, “Cell guidance by ultrafine topography in vitro,” J. Cell Sci. 99(May 1991):73-77.

601. I. Nagata, A. Kawana, N. Nakatsuji, “Perpendicular contact guidance of CNS neuroblasts on artificial microstructures,” Development 117(January 1993):401-408.

602. A. Rajnicek, S. Britland, C. McCaig, “Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type,” J. Cell Sci. 110(December 1997):2905-2913.

603. Y. Harada, J.T. Wang, V.A. Doppalapudi, A.A. Willis, M. Jasty, W.H. Harris, M. Nagase, S.R. Goldring, “Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro,” J. Biomed. Mater. Res. 31(May 1996):19-26.

604. G. Heinrich, B. Rinne, R. Thull, S.M. Rosiwal, R.F. Singer, “Characterization of CVD diamond-coated titanium base compounds for biomedical applications,” Biomed. Tech. (Berl.) 43(1998):382-383 (Suppl). In German.

605. Per Aspenberg, Asko Anttila, Yrjo T. Konttinen, Reijo Lappalainen, Stuart B. Goodman, Lars Nordsletten, Seppo Santavirta, “Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits,” Biomaterials 17(April 1996):807-812.

606. G. Dearnaley, “Diamond-like carbon: a potential means of reducing wear in total joint replacements,” Clin. Mater. 12(1993):237-244.

607. M.B. Guglielmotti, S. Renou, R.L. Cabrini, “A histomorphometric study of tissue interface by laminar implant test in rats,” Int. J. Oral Maxillofac. Implants 14(July-August 1999):565-570.

608. S. Santavirta, M. Takagi, E. Gomez-Barrena, J. Nevalainen, J. Lassus, J. Salo, Y.T. Konttinen, “Studies of host response to orthopedic implants and biomaterials,” J. Long Term Eff. Med. Implants 9(1999):67-76.

609. R. Lappalainen, A. Anttila, H. Heinonen, “Diamond coated total hip replacements,” Clin. Orthop. 352(July 1998):118-127.

610. P. Lilley, P.S. Walker, D.R. May, G.W. Blunn, “Dynamic erosion of large implant surfaces by soft tissue,” in P.J. Doherty, ed., Advances in Biomaterials 10, Elsevier Science Publishers B.V., Amsterdam, 1992, pp. 153-157.

611. H.S. Tran, M.M. Puc, C.W. Hewitt, D.B. Soll, S.W. Marra, V.A. Simonetti, J.H. Cilley, A.J. DelRossi, “Diamond-like carbon coating and plasma or glow discharge treatment of mechanical heart valves,” J. Invest. Surg. 12(May-June 1999):133-140.

612. K. Yamazaki, P. Litwak, O. Tagusari, T. Mori, K. Kono, M. Kameneva, M. Watach, L. Gordon, M. Miyagishima, J. Tomioka, M. Umezu, E. Outa, J.F. Antaki, R.L. Kormos, H. Koyanagi, B.P. Griffith, “An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system),” Artif. Organs 22(June 1998):466-474; K. Yamazaki, P. Litwak, R.L. Kormos, T. Mori, O. Tagusari, J.F. Antaki, M. Kameneva, M. Watach, L. Gordon, M. Umezu, J. Tomioka, H. Koyanagi, B.P. Griffith, “An implantable centrifugal blood pump for long term circulatory support,” ASAIO J. 43(September-October 1997):M686-M691.

613. J.R. Monties, P. Havlik, T. Mesana, J. Trinkl, J.L. Tourres, J.L. Demunck, “Development of the Marseilles pulsatile rotary blood pump for permanent implantable left ventricular assistance,” Artif. Organs 18(July 1994):506-511; J.R. Monties, I. Dion, P. Havlik, F. Rouais, J. Trinkl, C. Baquey, “Cora rotary pump for implantable left ventricular assist device: biomaterial aspects,” Artif. Organs 21(July 1997):730-734.

614. C.T. Dotter, “Transluminally-placed coilspring endarterial tube grafts. Long-term patency in canine popliteal artery,” Invest. Radiol. 4(September-October 1969):329-332.

615. H. Emneus, “Experimental investigations of corrosion of stainless steels used in bone surgery,” Acta Orthop. Scand. 44B(1961):1-62 (suppl).

616. J.A. Hunt, A. Remes, D.F. Williams, “Stimulation of neurophil movement by metal ions,” J. Biomed. Mater. Res. 26(June 1992):819-828.

617. C.L. Klein, H. Kohler, C.J. Kirkpatrick, “Increased adhesion and activation of polymorphonuclear neutrophil granulocytes to endothelial cells under heavy metal exposure in vitro,” Pathobiology 62(1994):90-98.

618. R.B. Tracana, J.P. Sousa, G.S. Carvalho, “Mouse inflammatory response to stainless steel corrosion products,” J. Mater. Sci. 5(1994):596-600.

619. C.L. Klein, P. Nieder, M. Wagner, F. Bittinger, C.J. Kirkpatrick, J.C. Lewis, et al, “The role of metal corrosion in inflammatory processes: induction of adhesion molecules by heavy metal ions,” J. Mater. Sci. 5(1994):798-807.

620. H. Emneus, U. Stenram, “Metal implants in the human body. A histopathological study,” Acta Orthop. Scand. 36(1965):115-126.

621. E. Escorcia, J. Hollman, “Current status of stents,” Am. J. Card. 69(1 March 1992):687-689.

622. J.C. Palmaz, “Intravascular stenting: from basic research to clinical application,” Cardiovasc. Intervent. Radiol. 15(September-October 1992):279-284.

623. I. Moussa, A. Colombo, “Coronary stenting: current state of the art,” Rev. Port. Cardiol. 18(February 1999):175-184 (Suppl).

624. S.A.V. Holmes, C. Cheng, H.N. Whitfield, “The development of synthetic polymers that resist encrustation on exposure to urine,” Br. J. Urol. 69(June 1992):651-655.

625. Yukio Ozaki, A.G. Violaris, P.W. Serruys, “New stent technologies,” Prog. Cardiovasc. Dis. 39(September-October 1996):129-140.

626. “Stents: The New Phytis Stent,” 3 August 1998; http://phytis.com/stent1.htm

627. C. Rogers, M.J. Karnovsky, E.R. Edelman, “Inhibition of experimental neointimal hyperplasia and thrombosis depends on the type of vascular injury and the site of drug administration,” Circulation 88(September 1993):1215-1221.

628. Kai Gutensohn, “Flow Cytometric Analysis of Coronary Stent-Induced Alterations of Platelet Antigens in an In-Vitro Model,” 23 April 1998; http://www.phytis.com/stent6.htm or http://web.archive.org/web/19981205015128/http://phytis.com/stent6.htm

629. M.J. Ignatius, N. Sawhney, A. Gupta, B.M. Thibadeau, O.R. Monteiro, I.G. Brown, “Bioactive surface coatings for nanoscale instruments: effects on CNS neurons,” J. Biomed. Mater. Res. 40(May 1998):264-274.

630. J.C. Heath, M.A.R. Freeman, S.A.V. Swanson, “Carcinogenic properties of wear particles from prostheses made in cobalt-chromium alloy,” Lancet 1(20 March 1971):564-566.

631. H.G. Willert, G.H. Buchhorn, M. Semlitsch, “Particle disease due to wear of metal alloys. Findings from retrieval studies,” in B.F. Morrey, ed., Biological, Material and Mechanical Considerations of Joint Replacement, Raven Press, New York, 1993, pp. 129-146.

632. J. Benson, “Pre-Survey on Biomedical Applications of Carbon,” Report R-7855, North American Rockwell Corp., Canoga Park, CA, 1969.

633. R.L. Tse, P. Phelps, “Polymorphonuclear leukocyte motility in vitro. V. Release of chemotactic activity following phagocytosis of calcium pyrophosphate crystals, diamond dust, and urate crystals,” J. Lab. Clin. Med. 76(September 1970):403-415.

634. I. Spilberg, J. Mehta, L. Simchowitz, “Induction of a chemotactic factor from human neutrophils by diverse crystals,” J. Lab. Clin. Med. 100(September 1982):399-404.

635. I. Spilberg, A. Gallacher, B. Mendell, “Studies on crystal-induced chemotactic factor. II. Role of phagocytosis,” J. Lab. Clin. Med. 85(April 1975):631-636; I. Spilberg, A. Gallacher, B. Mandell, “Calcium pyrophosphate dihydrate (CPPD) crystal-induced chemotactic factor: subcellular localization, role of protein synthesis and phagocytosis,” J. Lab. Clin. Med. 89(April 1977):817-822; I. Spilberg, J. Mehta, “Binding characteristics of radioiodinated crystal-induced chemotactic factor to human neutrophils,” J. Lab. Clin. Med. 104(December 1984):939-946; I. Spilberg, A.K. Bhatt, “Crystal-induced chemotactic factor,” Methods Enzymol. 162(1988):193-197.

636. C.J. Roberge, J. Grassi, R. De Medicis, Y. Frobert, A. Lussier, P.H. Naccache, P.E. Poubelle, “Crystal-neutrophil interactions lead to interleukin-1 synthesis,” Agents Actions 34(September 1991):38-41.

637. A. Nishimura, T. Akahoshi, M. Takahashi, K. Takagishi, M. Itoman, H. Kondo, Y. Takahashi, K. Yokoi, N. Mukaida, K. Matsushima, “Attenuation of monosodium urate crystal-induced arthritis in rabbits by a neutralizing antibody against interleukin-8,” J. Leukoc. Biol. 62(October 1997):444-449.

638. R. Terkeltaub, S. Baird, P. Sears, R. Santiago, W. Boisvert, “The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis,” Arthritis Rheum. 41(May 1998):900-909.

639. F.K. Higson, O.T. Jones, “Oxygen radical production by horse and pig neutrophils induced by a range of crystals,” J. Rheumatol. 11(December 1984):735-740.

640. A. Swan, B. Dularay, P. Dieppe, “A comparison of the effects of urate, hydroxyapatite and diamond crystals on polymorphonuclear cells: relationship of mediator release to the surface area and adsorptive capacity of different particles,” J. Rheumatol. 17(October 1990):1346-1352.

641. L. Nordsletten, A.K. Hogasen, Y.T. Konttinen, S. Santavirta, P. Aspenberg, A.O. Aasen, “Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings,” Biomaterials 17(August 1996):1521-1527.

642. H.S. Cheung, M.T. Story, D.J. McCarty, “Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells,” Arthritis Rheum. 27(June 1984):668-674.

643. I. Dion, M. Lahaye, R. Salmon, C. Baquey, J.R. Monties, P. Havlik, “Blood haemolysis by ceramics,” Biomaterials 14(1993):107-110.

644. S.B. Goodman, V.L. Fornasier, J. Lee, J. Kei, “The histological effects of the implantation of different sizes of polyethylene particles in the rabbit tibia,” J. Biomed. Mater. Res. 24(1990):517-524.

645. A.S. Shanbhag, J.J. Jacobs, J. Black, J.O. Galante, T.T. Grant, “Macrophage/particle interactions – effect of size, composition and surface area,” J. Biomed. Mater. Res. 28(1994):81-90.

646. H. Gelb, H.R. Schumacher, J. Cruckler, D.G. Baker, “In vivo inflammatory response to polymethylmethacrylate particulate debris – effect of size, morphology, and surface area,” J. Orthopaed. Res. 12(1994):83-92.

647. D.O. Adams, T.A. Hamilton, “The cell biology of macrophage activation,” Annu. Rev. Immunol. 2(1984):283-318.

648. L.C. Meagher, J.S. Savill, A. Baker, R.W. Fuller, C. Haslett, “Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromoboxane B2,” J. Leukoc. Biol. 52(September 1992):269-273.

649. I.R. McColl, D.M. Grant, S.M. Green, J.V. Wood, et al, “Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical-polymeric substrates,” Diam. Rel. Mat. 3(January 1994):83-87.

650. R. Butter, M. Allen, L. Chandra, A.H. Lettington, et al, “In vitro studies of DLC coatings with silicon intermediate layer,” Diam. Rel. Mat. 4(1 May 1995):857-861; R.S. Butter, A.H. Lettington, “Diamond-like Carbon for Biomedical Applications,” in A. Feldman, Y. Tzeng et al, eds., Applications of Diamond Films and Related Materials 1995, National Institute of Standards and Technology, NIST Special Publication 885, U.S.Government Printing Office, Washington, DC, 1995, p. 686.

651. H.G. Luhr, “Comparative studies on phagocytosis of coal powders of various carbonification grades, also of quartz and diamond powders in tissue cultures,” Arch. Gewerbepath. 16(1958):355-374.

652. A.C. Allison, J.S. Harington, M. Birbeck, “An examination of the cytotoxic effects of silica on macrophages,” J. Exp. Med. 124(1966):141-154.

653. B. Nemery, J. Erna, E.K. Verbeken, J.M. Lauweryns, M. Demedts, “Pulmonary toxicity in the hamster of intratracheally administered cobalt particles mixed with tungsten carbide, diamond or iron (Abstract),” Eur. Respir. J. 3(1990):341s.

654. A. O’Leary, D.P. Dowling, K. Donnelly, T.P. O’Brien, T.C. Kelly, N. Weill, R. Eloy, “Diamond-like carbon coatings for biomedical applications,” Key Engineering Materials 99-100(1995):301-308.

655. C.E. Troupe, I.C. Drummond, C. Graham, J. Grice, et al, “Diamond-based glucose sensors [diabetic blood analysis],” Diam. Rel. Mat. 7(February 1998):575-580.

656. E. Mitura, S. Mitura, Z. Has, et al, “Diamond-like carbon coatings for biomedical applications,” Diamond Films 12(1993):116; E. Mitura et al, “Diamond-like carbon coatings for biomedical applications,” Diamond Relat. Mater. 3(1994):896-898; A. Olborska, M. Swider, R. Wolowiec, P. Niedzielski, A. Rylski, S. Mitura, “Amorphous diamond – biomaterial for implant coatings,” Diamond Relat. Mater. 3(1994):899 et seq; A. Olborska, M. Ewider, E. Mitura, P. Niedzielski, S. Mitura, K. Olborski, J. Marciniak, Z. Paszenda, B. Koczy, “Biocompability of amorphous diamond in cranio-maxillo-facial surgery,” in P. Vinzenzini, ed., Advances in Science and Technology, Vol. 12, “Materials in Clinical Applications,” Techna srl., Faenza, 1995, p. 485; see http://www.p.lodz.pl/HighTech/118.html

657. K. Zolynski, P. Witkowski, A. Kaluzny, Z. Has, et al, “Implants with hard carbon layers for application in Pseudoarthrosis femoris sin. Ostitis post fracturam apertam olim factam,” J. of Chem. Vapor Deposition 4(January 1996):232-239.

658. G. Heinrich, T. Groegler, S.M. Rosiwal, R.F. Singer, “CVD diamond coated titanium alloys for biomedical and aerospace applications,” Surface and Coatings Technol. 94-95(October 1997):514-520.

659. D.P. Dowling, P.V. Kola, K. Donnelly, T.C. Kelly, et al, “Evaluation of diamond-like carbon-coated orthopaedic implants,” Diam. Rel. Mat. 6(March 1997):390-393.

660. M.I. Jones, I.R. McColl, D.M. Grant, K.G. Parker, et al, “Haemocompatibility of DLC and TiC-TiN interlayers on titanium,” Diam. Rel. Mat. 8(March 1999):457-462.

661. J.M. James, H.J. Testa, “The use of 99Tcm-Technegas in the investigation of patients with pulmonary thromboembolism,” Nucl. Med. Commun. 16(October 1995):802-810.

662. D.S. Rimkus, W.L. Ashburn, “Lung ventilation scanning with a new carbon particle radioaerosol (Technegas). Preliminary patient studies,” Clin. Nucl. Med. 15(April 1990):222-226; erratum in Clin. Nucl. Med. 15(July 1990):464.

663. H. Bunko, M. Seto, I. Kuji, T. Miyauchi, K. Hisada, “Lung ventilation imaging with TECHNEGAS: clinical study of lung deposition and ventilation/perfusion,” Kaku Igaku 28(March 1991):229-239. In Japanese.

664. W.M. Burch, “Evidence for the long-term biological distribution of Technegas particles,” Nucl. Med. Commun. 14(July 1993):559-561.

665. D.W. Mackey, W.M. Burch, I.G. Dance, K.J. Fisher, G.D. Willett, “The observation of fullerenes in a Technegas lung ventilation unit,” Nucl. Med. Commun. 15(June 1994):430-434.

666. T.J. Senden, K.H. Moock, J.F. Gerald, W.M. Burch, R,J. Browitt, C.D. Ling, G.A. Heath, “The physical and chemical nature of technegas,” J. Nucl. Med. 38(August 1997):1327-1333.

667. W.M. Burch, P.J. Sullivan, C.J. McLaren, “Technegas – a new ventilation agent for lung scanning,” Nucl. Med. Commun. 7(December 1986):865-871.

668. T. Isawa, B.T. Lee, K. Hiraga, “High-resolution electron microscopy of technegas and pertechnegas,” Nucl. Med. Commun. 17(February 1996):147-152.

669. Robert F. Service, “Nanotubes: The Next Asbestos?” Science 281(14 August 1998):941.

670. E.V. Gladkova, “Etiology of lung cancer in workers of graphite industry,” Vopr. Onkol. 36(1990):415-420. In Russian.

671. C.G. Uragoda, “A cohort study of graphite workers in Sri Lanka,” Occup. Med. (London) 47(July 1997):269-272; “Graphite pneumoconiosis and its declining prevalence in Sri Lanka,” J. Trop. Med. Hyg. 92(December 1989):422-424.

672. R. Begin, A. Dufresne, A. Cantin, S. Masse, P. Sebastien, G. Perrault, “Carborundum pneumoconiosis. Fibers in the mineral activate macrophages to produce fibroblast growth factors and sustain the chronic inflammatory disease,” Chest 95(April 1989):842-849.

673. R. Hanoa, “Graphite pneumoconiosis. A review of etiologic and epidemiologic aspects,” Scand. J. Work Environ. Health 9(August 1983):303-314.

674. R. Stein, W. Wockel, “Contribution to graphite dust lungs,” Pneumologie 45(May 1991):333-336. In German.

675. L. Mazzucchelli, H. Radelfinger, R. Kraft, “Nonasbestos ferruginous bodies in sputum from a patient with graphite pneumoconiosis: a case report,” Acta Cytol. 40(May-June 1996):552-554.

676. T.J. Webster, R.W. Siegel, R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomaterials 20(July 1999):1221-1227.

677. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, M.F. Sigot-Luizard, “Correlation between substratum roughness and wettability, cell adhesion, and cell migration,” J. Biomed. Mater. Res. 36(July 1997):99-108.

678. “Fullerenes,” 15 August 1997; http://www.chemie.tu-darmstadt.de/PCIII/Research/fullerenes_en_right.html

679. A.W. Jensen, S.R. Wilson, D.I. Schuster, “Biological applications of fullerenes – a review,” Bioorg. Med. Chem. 4(June 1996):767-779.

680. “Molecule of the Year. Buckyballs: Wide Open Playing Field for Chemists,” Science 254(20 December 1991):1706-1707.

681. N. Sera, H. Tokiwa, N. Miyata, “Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides,” Carcinogenesis 17(October 1996):2163-2169.

682. F. Kasermann, C. Kempf, “Photodynamic inactivation of enveloped viruses by buckminsterfullerene,” Antiviral Res. 34(March 1997):65-70.

683. T. Baierl, E. Drosselmeyer, A. Seidel, S. Hippeli, “Comparison of immunological effects of Fullerene C60 and raw soot from Fullerene production on alveolar macrophages and macrophage like cells in vitro,” Exp. Toxicol. Pathol. 48(November 1996):508-511.

684. Y. Tabata, Y. Murakami, Y. Ikada, “Photodynamic effect of polyethylene glycol-modified fullerene on tumor,” Jpn. J. Cancer Res. 88(November 1997):1108-1116; Y. Tabata, Y. Murakami, Y. Ikada, “Antitumor effect of poly(ethylene glycol)-modified fullerene,” Fullerene Sci. Technol. 5(1997):989-1007.

685. J.P. Kamat, T.P. Devasagayam, K.I. Priyadarsini, H. Mohan, J.P. Mittal, “Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes,” Chem. Biol. Interact. 114(24 July 1998):145-159.

686. R.A. Kotelnikova, A.I. Kotelnikov, G.N. Bogdanov, V.S. Romanova, E.F. Kuleshova, Z.N. Parnes, M.E. Vol’pin, “Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60,” FEBS Lett. 389(1 July 1996):111-114.

687. K. Asaka, H.T. Tien, A. Ottova, “Voltammetric study of charge transfer across supported bilayer lipid membranes (s-BLMs),” J. Biochem. Biophys. Methods 40(28 July 1999):27-37.

688. K.C. Hwang, D. Mauzerall, “Photoinduced electron transport across a lipid bilayer mediated by C70,” Nature 361(14 January 1993):138-140.

689. Karsten Bubka, Harald Gnewuch, Martin Hempstead, Jens Hammer, Malcolm L.H. Green, “Optical anisotropy of dispersed carbon nanotubes induced by an electric field,” Appl. Phys. Lett. 71(1997):1906-1908.

690. A.G. Rinzler, R.E. Smalley, unpublished data; cited in Jie Liu et al., “Fullerene Pipes,” Science 280(22 May 1998):1253-1256.

691. M. Sola, J. Mestres, M. Duran, “Molecular size and pyramidalization: Two keys for understanding the reactivity of Fullerenes,” J. Phys. Chem 99(1995):10752-10758; http://farao.udg.es/scripts/artabs.idc?art=096 or http://iqc.udg.es/cat/abstracts/0995.html

692. Thomas D. Clark, Lukas K. Buehler, M. Reza Ghadiri, “Self-Assembling Cyclic beta-3-Peptide Nanotubes as Artificial Transmembrane Ion Channels,” J. Am. Chem. Soc. 120(1998):651-656.

693. C. Toniolo, A. Bianco, M. Maggini, G. Scorrano, M. Prato, M. Marastoni, R. Tomatis, S. Spisani, G. Palu, E.D. Blair, “A bioactive fullerene peptide,” J. Med. Chem. 37(23 December 1994):4558-4562.

694. W.A. Scrivens, J.M. Tour, K.E. Creek, L. Pirisi, “Synthesis of 14C-Labeled C60 and its Biological Uptake in Human Keratinocytes,” in K.M. Kadish, R.S. Ruoff, eds., Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Electrochemical Society, Pennington NJ, Vol. 1, 1994, pp. 676-688.

695. Walter A. Scrivens, James M. Tour, Kim E. Creek, Lucia Pirisi, “Synthesis of 14C-labeled C60, Its Suspension in Water, and Its Uptake by Human Keratinocytes,” J. Am. Chem. Soc. 116(1994):4517-4518.

696. L.P. Zakharenko, I.K. Zakharov, S.N. Lunegov, A.A. Nikiforov, “Demonstration of the absence of genotoxicity of fullerene C60 using the somatic mosaic method,” Dokl. Akad. Nauk. 335(March 1994):261-262. In Russian.

697. L.P. Zakharenko, I.K. Zakharov, E.A. Vasiunina, T.V. Karamysheva, A.M. Danilenko, A.A. Nikiforov, “Determination of the genotoxicity of fullerene C60 and fullerol using the method of somatic mosaics on cells of Drosophila melanogaster wing and SOS-chromotest,” Genetika 33(March 1997):405-409. In Russian.

698. M.A. Nelson, F.E. Domann, G.T. Bowden, S.B. Hooser, Q. Fernando, D.E. Carter, “Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin,” Toxicol. Ind. Health 9(July-August 1993):623-630.

699. M. Satoh, K. Matsuo, Y. Takanashi, I. Takayanagi, “Effects of acute and short-term repeated application of fullerene C60 on agonist-induced responses in various tissues of guinea pig and rat,” Gen. Pharmacol. 26(November 1995):1533-1538.

 


Last updated on 16 April 2004