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Abstract

The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on
capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells.
Robots about 1 μm in size can produce up to several tens of picowatts, in steady state, if they fully use oxygen reaching their surface from the
blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three
orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power
constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available
power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and
near capillaries.
© 2010 Published by Elsevier Inc.
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Implanted or ingested medical devices can gather diagnostic
information and fine-tune treatments continually over an
extended period of time, in contrast with the limited monitoring
of a series of conventional laboratory tests. Current examples
include pill-sized cameras to view the digestive tract as well as
implanted glucose and bone-growth monitors to aid treatment of
diabetes and joint replacements, respectively. Ongoing develop-
ment of micromachines is significantly extending the capabilities
of implanted devices, including stand-alone millimeter-scale
microrobots for near-term in vivo surgical use. For example,
external magnetic fields from a clinical magnetic resonance
imaging (MRI) system can move microrobots containing
ferromagnetic particles through blood vessels.1-4 Other demon-
strated micromachines use flagellar motors to move through
fluids and offer the possibility of minimally invasive micro-
surgeries in parts of the body beyond the reach of existing
catheter technology.5,6
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Continuing the development of in vivo machines, nanotech-
nology has the potential to revolutionize health care7-10 with
devices small enough to reach and interact with individual cells
of the body. Current efforts focus on nanomaterials to enhance
diagnostic imaging and targeted drug delivery. For example,
nanoparticles can target specific cell types for imaging or drug
delivery.11-14 Other efforts focus on developing more complex
devices, such as multicomponent nanodevices called tectoden-
drimers, which have a single core dendrimer to which additional
dendrimer modules of different types are affixed, each type
designed to perform a function necessary to a smart therapeutic
nanodevice.15-17 These particles can also provide external
control of some chemistry within cells, such as through tiny
radiofrequency (RF) antennas attached to deoxyribonucleic acid
(DNA) to control hybridization.

Further capabilities arise from combining the precision of
these nanoscale devices with the programmability currently
only available in larger machines. Such microscopic robots
(“nanorobots”), with size comparable to cells, could provide
significant medical benefits.7,18-22 Realizing these benefits
requires fabricating the robots cheaply and in large numbers.
One approach to creating such robots is the engineering of
biological systems (eg, RNA-based logic inside cells,23 bacteria
attached to nanoparticles,24 executing simple programs via the
genetic machinery within bacteria,25,26 and DNA computers
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responding to logical combinations of chemicals27). Another
approach to manufacturing nanorobots is synthetic inorganic
machines.19 Such fabrication is beyond current technology but
could result from ongoing progress in developing nanoscale
devices. In particular, these machines could arise from continued
development from currently demonstrated nanoscale electronics,
sensors and motors,28-36 and rely on directed assembly.37

A key benefit of micrometer-scale machines is they can pass
through even the smallest vessels of the circulatory system and
thereby can approach within a few cell diameters of most tissue
cells of the body. However, this small size limits the capabilities
of individual robots. For tasks requiring greater capabilities in
conjunction with accessing individual cells, nanorobots could
use the circulation to reach the desired locations and, once there,
form aggregates by using self-assembly protocols.19 For robots
reaching tissues through the circulation, the simplest aggregates
are formed on the inner wall of the vessel. Robots could also
aggregate in tissue spaces outside small blood vessels by exiting
capillaries via diapedesis,19 a process similar to that used by
immune cells.38

Aggregates of robots in one location for an extended period of
time could be useful in a variety of tasks. For example, they
could improve diagnosis by combining multiple measurements
of chemicals.39 Using these measurements, the aggregate could
give precise temporal and spatial control of drug release19,20 as
an extension of an in vitro demonstration using DNA
computers.27 Using chemical signals, the robots could affect
behavior of nearby tissue cells. For such communication,
molecules on the robot's surface could mimic existing signaling
molecules to bind to receptors on the cell surface.19,40 Examples
include activating nerve cells41 and initiating immune
response,40 which could in turn amplify the actions of robots
by recruiting cells to aid in the treatment. Such actions would be
a small-scale analog of robots affecting self-organized behavior
of groups of organisms.42 Aggregates could also monitor
processes that take place over long periods of time, such as
electrical activity (eg, from nearby nerve cells), thereby
extending capabilities of devices tethered to nanowires intro-
duced through the circulatory system.43 In these cases, the robots
will likely need to remain on station for tens of minutes to a few
hours or even longer.

The aggregate itself could be part of the treatment by
providing structural support (eg, in rapid response to injured
blood vessels44). Aggregates could perform precise microsur-
gery at the scale of individual cells, extending surgical
capabilities of simpler nanoscale devices.45 Because biological
processes often involve activities at molecular, cell, tissue, and
organ levels, such microsurgery could complement conventional
surgery at larger scales. For instance, a few millimeter-scale
manipulators, built from micromachine (microelectromechanical
system; MEMS) technology, and a population of microscopic
devices could act simultaneously at tissue and cellular size scales
(eg, for diagnosis46 or nerve repair47,48).

A major challenge for nanorobots arises from the physics of
their microenvironments, which differ in several significant
respects from today's larger robots. First, the robots will often
operate in fluids containing many moving objects, such as cells,
dominated by viscous forces. Second, thermal noise is a
significant source of sensor error, and Brownian motion limits
the ability to follow precisely specified paths. Finally, power
significantly constrains the robots,49,50 especially for long-term
applications where robots may passively monitor for specific rare
conditions (eg, injury or infection) and must respond rapidly
when those conditions occur.

For medical tasks of limited duration, onboard fuel created
during robot manufacture could suffice. Otherwise, the robots
need energy drawn from their environment, such as converting
externally generated vibrations to electricity51 or chemical
generators.19 Power and a coarse level of control can be
combined by using an external source (eg, light) to activate
chemicals in the fluid to power the machines in specific
locations,52 similar to nanoparticle activation during photody-
namic therapy,53 or by using localized thermal, acoustic, or
chemical demarcation.19

This article examines generating power for long-term robot
activity from reacting glucose and oxygen, which are both
available in the blood. Such a power source is analogous to
bacteria-based fuel cells whose enzymes enable full oxidation of
glucose.54-56 We describe a computationally feasible model
incorporating aspects of microenvironments with significant
effect on robot performance but not previously considered in
robot designs (eg, kinetic time constants determining how
rapidly chemical concentrations adjust to robot operations). As a
specific scenario, we focus on modest numbers of robots
aggregated in capillaries.

A second question we consider is how the robots affect
surrounding tissue. Locally, the robots compete for oxygen with
the tissue and also physically block diffusion out of the capillary.
Robot power generation results in waste heat, which could
locally heat the tissue. The robot oxygen consumption could also
have longer-range effects by depleting oxygen carried in passing
red blood cells.

In the remainder of this article, we present a model of the key
physical properties relevant to power generation for robots using
oxygen and glucose in the blood plasma. Using this model, we
then evaluate the steady-state power-generation capabilities of
aggregated robots and how they influence surrounding tissue.
Methods

We consider microscopic robots using oxygen and glucose
available in blood plasma as the robots' power source. This
scenario involves fluid flow, chemical diffusion, power gener-
ation from reacting chemicals, and waste heat production. Except
for the simplest geometries, behaviors must be computed
numerically (eg, via the finite element method57).

This section describes our model. The simplifying approx-
imations are similar to those used in biophysical models of
microscopic environments, such as oxygen transport in small
blood vessels with diffusion into surrounding tissue.58,59 We
focus on steady-state behavior indicating long-term robot
performance when averaged over short-term changes in the
local environment such as individual blood cells (exclusively
erythrocytes, not white cells or platelets unless noted otherwise)
passing the robots.



Figure 1. Schematic geometry of vessel, robots, and surrounding tissue. The relative sizes of the regions are not to scale for the parameters of our model
(described in the section “Model parameters”). (A)A slice through the axially symmetric geometry with the vessel axis at the bottom, showing a cross section of
10 rings of robots. Fluid flows through the vessel from left to right, with varying speed depending on distance to the vessel wall. (B) Vessel cross section at the
position of one ring of robots.
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Blood vessel and robot geometry

Evaluating behavior in general three-dimensional geometries
is computationally intensive. Simplified physical models give
useful insight with significantly reduced computational
requirements.59 Such simplifications include using two-dimen-
sional and axially symmetric three-dimensional geometries. The
latter case, appropriate for behavior within vessels, has physical
properties independent of angle of rotation around the vessel
axis. We adopt this approach and consider the axially symmetric
geometry illustrated in Figure 1: a segment of a small vessel with
robots forming one or more rings around the vessel wall. The
figure includes the Fahraeus effect: confinement of blood cells
near the center of the vessel. The section “Effects of cells on flow
and chemical transport” of this article describes how we model
this effect.

To ensure axial symmetry, we model the robot's interior with
uniform physical properties and take their shapes conforming to
the vessel wall with no gaps between neighboring robots.19

Thus, as seen in Figure 1, B, the surfaces of the robots contacting
the plasma or the vessel wall are curved, so the robots are only
roughly cubical. The other robot surfaces indicated in Figure 1
are not treated explicitly in our model.

Physically uniform robot interiors are convenient but not
necessary for this model. An axially symmetric model only
requires the robots to be uniform in the direction around the
vessel and that the radial boundary surfaces between robots are
treated as continuous with the interiors. Robot characteristics
could vary in the direction along the vessel axis or radially. For
example, the axially symmetric model could apply to robots
whose power generators are close to the plasma-contacting
surface to minimize internal oxygen transport, analogous to
clumping of mitochondria in cells near capillaries.59 Moreover,
while we primarily focus on physically adjacent rings of robots,
axial symmetry also holds for sets of rings that are spaced apart
from each other along the vessel. We refer to a set of rings of
robots as a ringset.
We ignore pulsatile variations in vessel circumference as
these are mostly confined to the larger arterial vessels.60 Thus,
our model geometry is both axially symmetric and static.

Fluid flow

Viscosity dominates the motion of microscopic objects in
fluids, producing different physical behaviors than for larger
organisms and robots in fluids.61-65 The Navier-Stokes equation
describes the flow.64,66 For the vessel geometry of Figure 1, the
pressure difference between the inlet and outlet of the vessel
determines the nature of the flow. We specify the pressure
difference as ▿pL where ▿p is the overall pressure gradient and
L is the length of the modeled segment of the vessel. Whereas
some fluid leaks into or out of capillaries, we ignore this small
component of the flow, in common with other models of blood
flow in capillaries.59,67 In our scenario, the robots are attached to
the vessel wall. For modeling fluid behavior, such static robots
merely change the shape of the vessel boundary. We apply the
“no slip” boundary condition on both the robots and the vessel
wall (ie, fluid speed is zero at these boundaries). Thus, the flow
speed varies from zero at the wall to a maximum value in the
center of the vessel.

Chemical diffusion

Microscopic robots and bacteria face similar physical
constraints in obtaining chemicals.68 At small scales, diffusion
arising from random thermal motions is the main process
transporting chemicals. Even at the scale of these robots,
individual molecules and their distances between successive
collisions are tiny. Thus, chemicals in the fluid are well
approximated by a continuous concentration C specifying the
number of molecules per unit volume. The concentration obeys
the diffusion equation,69

AC
At

= − j � F + C ð1Þ



4 T. Hogg, R.A. Freitas Jr / Nanomedicine: Nanotechnology, Biology, and Medicine xx (2010) xxx–xxx

ARTICLE IN PRESS
where F = −D▿C + vC is the chemical flux, ▿C is the
concentration gradient, v is the fluid velocity vector, D is the
chemical diffusion coefficient, and Γ is the reaction rate density
(ie, rate at which molecules are created by chemical reactions per
unit volume). The first term in the flux is diffusion, which acts to
reduce concentration gradients, and the second term arises from
movement of the fluid in which the chemical is dissolved.

Small molecules such as oxygen and glucose readily diffuse
from capillaries into surrounding tissue. Eq. (1) also describes
the transport within the tissues wherein v ≈ 0 (ie, the transport is
completely due to diffusion). The diffusion coefficient of oxygen
in tissue is close to that in plasma,58 and for simplicity we use the
same diffusion coefficients in both regions.

Kinetics of oxygen release from red blood cells

As robots consume oxygen from the plasma, passing red
blood cells respond to the reduced concentration by releasing
oxygen. An important issue for powering robots is how
rapidly cells replenish the oxygen in the plasma as the cells
pass the robots.

A key value determining the oxygen release from red blood
cells is the hemoglobin saturation S: the fraction of hemoglobin
capacity in a cell which has bound oxygen.70 The oxygen
concentration in the cell isCmax

O2
S, whereCmax

O2
is the concentration

in the cell when all the hemoglobin has bound oxygen.
The saturation is high when the cell is in fluid with high

oxygen content (ie, in the lungs) and low after the cell has
delivered oxygen to tissues of the body. Quantitatively, the
equilibrium saturation, conventionally expressed in terms of the
equivalent partial pressure p of oxygen (O2) in the fluid around
the cell, is well described by the Hill equation59:

Sequib að Þ = an

1 + an
ð2Þ

where a = p/p50 is the partial pressure ratio, p50 is the partial
pressure at which half the hemoglobin is bound to oxygen, and n
characterizes the steepness of the change from low to high
saturation. The saturation in small blood vessels ranges from
near 1 within the lungs to around one-third within working
tissues. Henry's law relates the partial pressure to the
concentration: p = Ho2Co2 with the proportionality constant
HO2 depending on the fluid temperature.

Eq. (2) gives the equilibrium saturation (ie, the value in a red
cell after residing a sufficiently long time in a fluid with partial
pressure p). However, small robots consuming oxygen from the
plasma may produce large gradients in oxygen concentration. If
the oxygen concentration gradients and flow speed are high
enough, passing cells will not have time to equilibrate with the
abruptly decreased oxygen concentration before the flow moves
them past the robots. Whether this is the case depends on the
kinetics (ie, how rapidly cells change their saturation level when
exposed to concentration changes). The timescale for oxygen
release is determined by reaction kinetics of oxygen binding to
hemoglobin in the cell and diffusion of these chemicals within
the cell.

One model of this kinetics is a lumped-model differential
equation relating saturation to concentration outside the cell.71 In
this model, the change in S, and hence the flux of oxygen from a
cell into the surrounding plasma, is determined from the partial
pressure ratio a as

dS tð Þ
dt

= −
1
tu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s a; S tð Þð Þ

p
ð3Þ

where tu is a characteristic timescale for oxygen unloading, and
the saturation unloading function s is

s a; Sð Þ = 2 1 − Sð Þ
n + 1

an + 1 − 2Sa +
2n

n + 1
S1 + 1=n

1−Sð Þ1=n
: ð4Þ

If oxygen partial pressure, p, varies over the surface of the
cell, the rate of change is the average of the right-hand-side of
Eq. (3) over the surface of the cell. Eq. (3) is consistent with the
equilibrium relation of Eq. (2) because s(a,Sequib(a)) = 0.

As a boundary condition on oxygen saturation S, at the vessel
inlet we take S equal to the equilibrium value with the oxygen
plasma concentration specified at the inlet. Numerical evaluation
of Eq. (3) requires care to accurately evaluate s when the
concentration is close to equilibrium to avoid numerical
instability if the computed concentration in the plasma is even
slightly above the cell saturation.

The blood cells also have a role in removing the carbon
dioxide (CO2) produced by the robots (described in the following
section). Only a small portion is transported dissolved in the
plasma. Instead, most CO2 is transported or chemically
converted to bicarbonate within red cells. The detailed kinetics
of these processes72 does not directly limit robot power
production and thus is beyond the scope of this article.
Moreover, the robot power production rates considered here
increase the carbon dioxide concentration by only a few percent,
which can be buffered by processes within the passing cells and
so is not likely to be a safety constraint on the power levels in the
scenarios we consider.

Robot power generation

The overall chemical reaction combining glucose (C6H12O6)
and oxygen to produce water (H2O) and carbon dioxide is

C6H12O6 + 6O2Y6CO2 + 6H2O:

We denote the energy released by each such reaction by e. A
robot absorbing oxygen molecules at a rate JO2 produces power
JO2e = 6 because each reaction uses six O2 molecules.

We consider robots on the vessel wall absorbing chemicals
from the fluid only on their plasma-facing sides. For
generating power with oxygen and glucose from the blood,
oxygen is the limiting chemical.19 We examine two design
choices for the robots: how they collect oxygen arriving at
their surface and their capacity for processing that oxygen to
produce power.

For the first design choice, oxygen transport within the
robots, we examine two extremes. In the basic (“no pumps”)
design, the robots absorb oxygen passively via diffusion. In the
advanced (“with pumps”) design, the robots use pumps on their
surfaces to actively absorb all arriving oxygen and distribute this
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gas to internal power-generating sites. We treat the full surface as
available to absorb chemicals. In practice, robots will absorb
chemicals with only a fraction of their surface. This is not a
significant constraint for microscopic robots as even a modest
fraction of a surface with absorbing sites gives absorption almost
as large as that of a fully absorbing surface.68

For the second design choice, robot power production
capacity, we also examine two cases. Onboard generating
capacity arises from the number and efficiency of the internal
reaction sites (eg, fuel cells)19,54,56 in each robot. If capacity is
constrained by engineering feasibility of fuel cell fabrication or
by difficulty of placement into the robots, the robots will have
relatively few fuel cells—and consequently a low maximum
capacity for power generation—hence are called “low-capacity”
robots. When these constraints do not apply, we have “high-
capacity” robots.

A robot with sufficient pump and generating capacity
produces power from all oxygen reaching the robot. This
oxygen-limited situation corresponds with a zero-concentration
boundary condition for the oxygen concentration in the fluid at
the robot surface. With this boundary condition, integrating the
dot product of the flux F (determined from Eq. (1)) and normal
vector of the plasma-facing surface of the robot gives the rate
JO2 (molecules per unit time) at which the robot absorbs
oxygen molecules, with no need to explicitly model oxygen
transport and consumption inside the robot. Whereas pumps
cannot maintain the zero-concentration boundary condition at
arbitrarily high oxygen flux, theoretical pump capacity appears
more than adequate for the oxygen concentrations relevant to
our model.19

A robot's power-generating capacity is limited by the number
of reaction sites it contains, Nreact, and by the maximum rate of
reacting glucose and oxygen at each site, r. Specifically, the
steady-state oxygen absorption rate must satisfy Jo2V6Nreactr. If
this bound on absorption rate is smaller than the oxygen flux
corresponding with the zero-concentration boundary condition
the pumps could maintain, then the robot's power generation will
be capacity-limited rather than oxygen-limited, and the zero-
concentration boundary condition will not apply. In this
situation, for a robot with pumps, we consider the pumps
delivering as much oxygen as the reaction sites can process,
giving robot power generation equal to its maximum possible
value, namely, Nreactre.

Determining power generation for robots without pumps
requires explicitly modeling the oxygen transport and power
generation within the robot. In this case, the oxygen moves by
diffusion within the robot. We treat power generation as spatially
continuous rather than occurring at discrete reaction sites,
thereby maintaining axial symmetry. Thus, Eq. Eq. (1) applies
within the robot, with the reaction rate density for oxygen, Γ,
determined by the number density of reaction sites, ρreact, and the
reaction kinetics of each site. For uniformly distributed reaction
sites, ρreact = Nreact/Vrobot where Vrobot is the volume of each
robot. Specifically, at a given location inside the robot, Γ =
6Probot/e where Probot is the power-generation density (ie, the
power generated per unit volume at that location). We model
robot power generation using Michaelis-Menten kinetics73

assuming oxygen is the limiting factor because glucose
concentrations are typically two orders of magnitude larger
than those of oxygen19:

Probot = eqreactr
CO2

K + CO2

ð5Þ

where K is the concentration of O2 giving half the maximum
reaction rate. The total power generated by a robot is the integral
of Probot over the robot's volume, which is the same as the power
determined from the rate the robot absorbs oxygen (ie, eJo2 = 6).
In this no-pumps case, JO2 is determined from the solution of Eq.
(1) in the fluid and robot interior rather than from a boundary
condition on the robot's surface.

The number of reaction sites in a robot is a design choice,
limited by the volume of each reaction site. As an example, a
nanoscale oxygen-glucose fuel cell could be as small as 3000
nm3 with r = 106 glucose molecules per second.19 ρreact cannot
be larger than the reciprocal of this volume—which would
correspond with the robot entirely filled by power-generation
reaction sites. To illustrate the trade-offs among these design
choices, we consider high- and low-capacity robots, both with
and without pumps. Increasing oxygen concentration at the
reaction sites increases their power output closer to their
maximum (as the fraction appearing in Eq. (5) gets closer to
its maximum value of 1). Thus, pumps can at least somewhat
compensate for a decrease in the number of functional reaction
sites by increasing the oxygen concentration so the remaining
reaction sites operate more efficiently. On the other hand, if
pumps are more difficult to fabricate than fuel cells, robots would
benefit from a large number of fuel cells (high capacity) to
compensate for the inability of passive diffusion to increase
concentrations. As another approach to dealing with few fuel
cells, we also consider placing all of them near the plasma-facing
surface of the robot, where oxygen concentration is highest in the
passive diffusion (no-pumps) design.

Oxygen use in tissues

Models of oxygen use and power generation in tissues can
include various details of tissue structure.59 A simple approach,
adopted in this article, treats the tissue surrounding the vessel as
homogeneous and metabolizing oxygen (assumed to be the rate-
limiting chemical) with kinetics similar in form to Eq. (5):

Ptissue = Pmax
tissue

CO2

K + CO2

ð6Þ

where Pmax
tissue is the power demand (power per unit volume) of the

tissue, and Ktissue is the concentration of O2 giving half the
maximum reaction rate.

Heating

The robot-generated power eventually dissipates as waste
heat into the environment. Heat transfer from the robots to their
surroundings occurs by both conduction and convection due to
the moving fluid. We take the tissue environment outside the
vessel to be small enough so as not to include other vessels. Thus
heat transport in the tissue is via conduction only.
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The temperature T obeys a version of Eq. (1)66:

qcthermal
AT

At
= − j � F + Q ð7Þ

where F = −kthermal▿T + ρcthermalTv is the heat flux, ▿T is the
temperature gradient, v is the fluid velocity vector, ρ is fluid
density, kthermal is the fluid's thermal conductivity, cthermal is the
fluid's heat capacity, and Q is the heat generation rate density,
which is the same as the power production per unit volume. For
robots absorbing all oxygen reaching them (ie, using pumps), we
take Q uniform within the robot, that is, equal to eJo2 = 6Vrobotð Þ.
For robots without pumps, power generation varies within the
robot, with Q = Probot from Eq. (5). For temperature boundary
conditions, we take the incoming fluid and the outermost radius
of the tissue cylinder to be held at body temperature.

While we could include tissue power generation as a heat
source in the heat equation, here we focus on the additional heat
from the robots alone. Thus we evaluate how robot power
generation adds to the heat load produced by the tissue.We do not
consider any changes in the tissue, either locally or systemically
(eg, increasing blood flow), in response to the additional heating.
This is a reasonable assumption given the tiny temperature
increase described in the section “Tissue power and heating”.

Effects of cells on flow and chemical transport

In small blood vessels, individual blood cells are comparable
in size to the vessel diameter. Thus, at the length scales relevant
for microscopic robots, the fluid consists of plasma separating
relatively large objects. The cells significantly affect the fluid
flow and, because cells are not rigid, the flow alters the shape of
the cells (though we can ignore red blood cell rotation-induced
elevation of diffusivity74 because these cells are motionally
restricted in capillaries and elevation is lowest for small
molecules such as O2). Similarly, the vessel walls are not rigid,
which somewhat changes both the flow and the vessel boundary.
A key consequence for oxygen transport is the confinement of
cells toward the center of the vessel. The cell-free fluid near the
vessel wall is a gap over which oxygen released by cells must
diffuse to reach the vessel wall or the plasma-facing robot
surface. In capillaries, this gap ranges from about 0.5 to 1 μm,
depending on flow speed.67,75

Modeling the interactions between fluid and blood cells is
computationally feasible for a few cells in capillaries.70,76

However, modeling interactions with many deforming cells is
challenging, and close packing of objects moving in fluid leads
to complex hydrodynamic interactions.77,78 Instead of evaluating
these effects in detail, we use approximate models that average
over the cell behaviors and assume rigid vessel walls. Such
models are commonly used to study oxygen delivery in tissue.59

This averaging approach also simplifies analysis of collective
robot behavior.79-81

In this approximation, the vessel only contains fluid, which
consists of two components as illustrated in Figure 1. The first
component models the mix of cells and plasma in the central
portion of the vessel. Instead of explicitly modeling individual
cells, this approximation averages over the cell positions in the
fluid. The second component is the fluid near the vessel wall,
consisting of plasma only.

The fluid component modeling the mix of cells and plasma is
confined to a distance Rcell from the vessel axis. This distance
varies with position along the vessel, as shown in Figure 1,
because robots on the wall reduce the volume available to the
passing fluid. Thus, all oxygen released by the passing cells is
within a distance Rcell of the vessel axis, and this oxygen must
diffuse through the plasma gap to reach the robots or the tissue.
We take Rcell to follow a fluid streamline with the gap
appropriate for the fluid speed in the section of the vessel far
from the robots.75 This approximation accounts for the location
of cells toward the center of the vessel without the complexity of
modeling how cells change shape as they pass the robots.

A key parameter for oxygen delivery is the hematocrit, hfull
(ie, the fraction of the capillary volume occupied by cells). In our
model, the more relevant parameter is the hematocrit, h, within
the fluid component containing the cells, which has a smaller
volume than the full vessel. As both values must give the same
rate for cells passing through the vessel, these quantities are
related by

h = hfull
R2vavg
R2
cellvcell

ð8Þ

where vavg is the average flow speed in the vessel, and vcell is the
average flow speed within the central portion of the vessel with
fluid component modeling the cells. Fluid speed is faster near the
center of the vessel than near the walls, so vcell is larger than vavg.
The quantities vavg, vcell, and Rcell vary along the length of the
vessel, but the ratio appearing in Eq. (8) is constant due to our
choice of Rcell following a fluid flow streamline. Within the cell
fluid component, oxygen bound to hemoglobin has concentra-
tion hCmax

O2
S, and oxygen in the plasma has concentration

1 − hð ÞCo2 . Future evaluations of the accuracy of this simplifying
approach to oxygen delivery might include results from more
detailed models comparing oxygen release from red cells with
that of hemoglobin-based oxygen carriers dissolved in plasma
rather than contained in cells.82 This averaging over cell position
can also be viewed as approximating the time-averaged behavior
as cells pass the robots on the vessel wall.

We model the kinetics of oxygen release from passing cells as
due to changes in cell saturation in the cell fluid component (ie,
S). The effect of oxygen release from red cells into the plasma
arises from the rate of change in saturation inside the cells,71 as
discussed in the section “Kinetics of oxygen release from red
blood cells” with Eq. (3). Thus the reaction term in Eq. (1) for
oxygen in the fluid component with the cells is

C = − hCmax
O2

dS
dt

: ð9Þ

Because dS/dt from Eq. (3) is negative, this value for Γ is
positive, giving an increase in oxygen in the plasma.

We determine S along the vessel using the lumped model
discussed in the section “Kinetics of oxygen release from red
blood cells.” The value of S along the vessel is governed by a
one-dimensional version of the diffusion equation based on the



Table 1
Model parameters for fluid, vessel, and tissue⁎

Parameter Value

Geometry
Vessel radius R = 4 μm
Tissue cylinder radius Rtissue = 40 μm
Modeled vessel length L = 100 μm
Fluid
Ambient temperature T = 310 K
Thermal conductivity kthermal = 0.6 W m–1 K–1

Heat capacity cthermal = 4200 J kg–1 K–1

Fluid density ρ = 103 kg/m3

Fluid viscosity η = 10−3 kg m–1 s–1

Pressure gradient ▿p = 1 × 105 to 5 × 105 Pa/m
Hematocrit hfull = 25%
Tissue
Power demand Pmax

tissue= 4 to 60 kW/m3

O2 concentration for half power Ktissue = 1021 molecule/m3

Reaction energy from one glucose molecule e = 4 × 10−18 J
Density, thermal conductivity Same as fluid
Red blood cells
Partial pressure for 50% O2 saturation p50 = 3500 Pa
O2 saturation exponent n = 2.7
Time constant for O2 unloading tu = 76 ms
Maximum O2 concentration in cell Cmax

O2
= 1025 molecule/m3

Heme diffusion coefficient Dheme = 1.4 × 10−11 m2/s
Chemicals in plasma
O2 diffusion coefficient Do2 = 2 × 10−9 m2/s
O2 concentration at inlet Co2 = 3 × 1022 to 7 × 1022

molecule/m3

O2 partial pressure to concentration ratio H = 1.6 × 10−19 Pa/
(molecule/m3)

⁎ We consider two values, the extremes of the listed range, for
parameters indicated in boldface. For the vessel without robots, the pressure
gradient range corresponds with average flow speeds of vavg = 0.2 to 1 mm/s.
The corresponding hematocrit values within the cell fluid component are h =
0.31 to 0.36. See text for source references.

Table 2
Two scenarios: low with low tissue power demand (basal rate) and slow fluid
flow, and high with high tissue power demand and fast fluid flow⁎

Parameter Scenario

Low demand High demand

Pressure gradient ▿p = 105 Pa/m ▿p = 5 × 105 Pa/m
Tissue power demand Pmax

tissue= 4 kW/m3 Pmax
tissue= 60 kW/m3

⁎ Both scenarios use high inlet concentration: CO2 = 7 × 1022 molecule/
m3 (arterial).
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average flow speed in the cell fluid component, vcell, and using
the chemical diffusion coefficient for oxygen bound to
hemoglobin in the cell, Dheme. We determine the reaction term
in the diffusion equation for S, for each position along the vessel,
by averaging the right-hand side of Eq. (3) over the cross section
of the vessel at that position, based on the oxygen concentration
in the plasma of the plasma and cell component of the fluid. This
average value gives the rate of change for the saturation of cells
as they pass that position along the vessel. In this way, the
changes in saturation within the cells and the concentration in the
plasma are coupled equations that are solved simultaneously.

Model parameters

Table 1 lists the parameter values we use. To locate the
boundary between the fluid component modeling the cells and
the cell-free component near the vessel wall, we use cell-free
gaps of 0.98 and 1.27 μm at the vessel inlet for pressure gradients
of 105 and 5 × 105 Pa/m, respectively. For the 10-μm ringset, the
fluid streamline becomes nearly flat (ie, fluid velocity in the
radial direction is nearly zero) near the middle of the aggregate,
and the corresponding cell-free gap for the narrow section of the
vessel by the robots (ie, of radius 3 μm) matches that for a long
vessel with radius 3 μm.75
We assume the fluid properties (ie, density, viscosity, heat
capacity, and thermal conductivity) are uniform throughout the
model and roughly equal to those of water. The pressure gradient
range we consider corresponds with average flow speeds of 0.2
to 1 mm/s in a vessel of radius R without robots. These speeds
are typical of measured flow in capillaries.19 For comparing
vessels with and without robots, we use the same pressure
gradients in both cases. That is, we compare constant-pressure
boundary conditions rather than constant-velocity conditions.
The ambient temperature is body temperature, and the hematocrit
value is typical of small blood vessels,19 which is somewhat
lower than in larger vessels.

For the kinetics, Ktissue is from Ref. [58] and the blood cell
kinetics parameters are from Refs. [71] and [59]. The oxygen
concentration range corresponds with venous and arterial ends of
capillaries.19 Concentrations of glucose and CO2 in blood
plasma are in the millimolar range (about 1024 molecule/m3), far
larger than the oxygen concentrations.19 For evaluating micro-
scopic robot behavior, a convenient measure of chemical
concentration in a fluid is number of molecules per unit volume.
Much of the existing literature uses units convenient for larger
scales, such as moles of chemical per liter of fluid (ie, molar, M)
and grams of chemical per cubic centimeter. Discussions of
gases dissolved in blood often specify concentration indirectly
via the corresponding partial pressure of the gas under standard
conditions. As an example, oxygen concentration Co2 = 1022

molecule/m3 corresponds with a 17 μM solution, 0.53 μg/cm3,
and with a partial pressure of 1600 Pa or 12 mmHg.

Tissue power demands vary considerably, depending on the
tissue type and overall activity level. We consider typical values
of resting and high power demand19 and focus on two extreme
scenarios given in Table 2. The low-demand scenario is the
likely situation for most medical procedures in practice. The
high-demand scenario has a relatively high tissue demand but is
not the peak metabolic rate in human tissue, which can reach
rates as high as 200 kW/m3.58

Fluid and chemical properties vary with temperature, but, as
described below, the temperature range seen in our model is very
small. Thus, we take the values at body temperature. We also
treat the saturation curve of Eq. (4) as constant although it varies
somewhat with CO2 concentration through a change in p50.

The robot size, number aggregated on the vessel wall, and
power-generation capacity are design choices, with the values we
consider given in Table 3. We consider sets of circumferential
rings along the vessel wall either 1 or 10 adjacent robots long.
These aggregates consist of 20 and 200 robots, respectively. We
estimate K as the value corresponding with fuel cells based on



Table 3
Robot design parameters⁎

Parameter Value

Geometry
Robot size Lrobot = 1 μm
Robots per circumferential ring 20
Robot volume Vrobot = 1.1 μm3

Length of aggregate 1 to 10 μm
Power generation
Power generation site density ρreact = 0.06 × 1021/m3 to 3 × 1021/m3

Power generation reaction rate r = 106/s
O2 concentration for half power K = 1024 molecule/m3

⁎ The robot size is the length of each robot in the radial and longitudinal
directions. The curved surfaces facing the plasma and vessel wall have slightly
different lengths. When not limited by availability of oxygen or glucose, a
power-generation reaction site produces er = 4 pW. We consider two values,
the extremes of the listed range, for parameters indicated in boldface. The
number of power-generation sites in each robot, Nreact = ρreactVrobot, ranges
from 66 to 3300, with corresponding maximum power per robot, reNreact, of
260 pW and 13,000 pW for low- and high-capacity robots, respectively.
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the glucose oxidase enzyme.83 The high- and low-capacity robot
designs correspond with the choices of reaction site density
given in Table 3. For the high-capacity case, the power
generation uses about 1% of the robot volume with the fuel
cells described in the section “Robot power generation.” As
shown in the “Results” section, the maximum power generation,
even for the low-capacity case, is considerably larger than
possible with the available oxygen. So these design choices are
reasonable for studying limitations due to available oxygen.

In our model, the fluid flow is independent of the chemical
concentrations, and both are independent of the heat generation
due to our assumption that the parameters of Table 1 are
independent of temperature in the narrow physiologic range.
This simplifies the numerical solution by allowing an iterative
procedure: solving first for the fluid flow, then for the chemical
concentration, and finally for the temperature. Specifically, we
first solve for the fluid flow in the vessel as determined by the
vessel and robot geometry and the imposed pressure gradient.
Given the fluid velocity, we then simultaneously solve Eq. (1) for
the oxygen concentration and Eq. (3) for the blood cell average
oxygen saturation. Eq. (5) and Eq. (6) give the power-generation
density in the robots and tissue, respectively. For robots with
pumps, we impose the boundary conditions on the plasma-facing
robot surface described in the section “Robot power generation”
and do not need to solve Eq. (1) inside the robot. Dividing the
power generation by e/6, where e is the energy per reaction,
gives the corresponding oxygen reaction rate densities Γ
appearing in Eq. (1) (ie, the number of oxygen molecules
consumed per unit volume per unit time at each location). This
solution gives the oxygen concentration CO2 and flux F
throughout the vessel and the tissue and the average cell
saturation S as a function of distance along the vessel. Finally,
solving Eq. (7) using the solutions for the fluid flow and power
generated by the robots gives the temperature increase due to the
robots. We solve for steady-state behaviors using the finite
element method,84 though the model also applies to time-
dependent scenarios.
Results

Figure 2 shows the distribution of oxygen in the tissue and
plasma in the vessel near the robots. The robots reduce the local
oxygen concentration far more than the surrounding tissue, as
seen by comparing with the vessel without robots. Most of the
extra oxygen used by the robots comes from the passing blood
cells, which have about 100 times the oxygen concentration of
the plasma. Within the vessel with the robots, the concentration
in the plasma is lowest in the fluid next to the robots.
Downstream of the robots is a recovery region where the
concentration increases a bit as cells respond to the abruptly
lowered concentration near the robots. In the low-demand
scenario, the concentration in the vessel just downstream of the
robots is somewhat lower than in the surrounding tissue. Thus in
this region, the net movement of oxygen is from the tissue into
the vessel, where the fluid motion transports the oxygen
somewhat downstream before it diffuses back into the tissue.
In effect, part of the oxygen entering the vessel travels through
the tissue around robots to the downstream section of the vessel,
in contrast with the pattern without robots where oxygen is
always moving from the vessel into the surrounding tissue. The
streamlines in Figure 2 show that the laminar flow speeds up as
the fluid passes through the narrower vessel section where the
robots are stationed.

Figure 3 gives another view of how the robots affect the
oxygen concentration in the surrounding tissue. The concentra-
tion is zero at the robot surface facing into the vessel. The robots
decrease the oxygen concentration somewhat but do not affect
tissue power generation much because the concentration remains
well above the threshold where power generation drops
significantly (ie, Ktissue given in Table 1). However, at large
distances from the vessel in the high-demand scenario, oxygen
concentration is low enough to significantly decrease tissue
power production. This low level of oxygen also occurs when
there are no robots.

Figure 3 includes comparison with the simpler Krogh model
of oxygen transport to tissue from vessels without robots.85 The
Krogh model assumes constant power density in the tissue and
no diffusion along the vessel direction in the tissue. For the low-
demand scenario, the Krogh model results are close to those from
our model. However, in the high-demand case, the Krogh model
has oxygen concentration drop to zero about 10 μm from the
vessel, due to the unrealistic assumption of constant power use
rather than the decrease in power use at low concentrations given
by Eq. (6).

Oxygen flux to the robots ranges from about 1019 to 1020

molecule m–2 s–1 with the zero-concentration boundary
condition. Estimates of pump capabilities are up to 1022

molecule m–2 s–1,19 which is more than 100 times the actual
flux to the robots. Such pumps could thereby maintain the zero
concentration boundary condition. At an energy use of 10−20 J/
molecule,19 the pumps would require about 1 pW per robot to
handle the incoming flux, slightly reducing the power benefit of
the pumps. However, much of this pumping energy may be
recoverable by adding a generator using the subsequent
expansion of the reaction products to their lower partial pressure
outside the robot.18



Figure 2. Oxygen concentration in the tissue and plasma within the vessel. Each diagram shows a cross section through the vessel and surrounding tissue of
length 30 μm. Typically, this length of vessel contains about four cells. The left plots (A, C) are for the vessel without robots. The right plots (B, D) include the
10-μm ringset with pumps, which occupies the circumferential volume indicated by the white rectangles next to the vessel wall. The top and bottom plots are for
the low- and high-demand scenarios of Table 2, respectively. Fluid in the vessel flows from left to right. Distances along the sides of each plot are indicated in
micrometers, and concentrations on the color bars are in units of 1022 molecule/m3. The horizontal black lines are the vessel walls, and the gray curves inside the
vessel are fluid flow streamlines.

Figure 3. Oxygen concentration, in units of 1022 molecule/m3, along a radial cross section from the center of the vessel to the outer edge of the tissue region.
The cross section is in the middle of the modeled section of vessel and tissue, corresponding with a vertical line in the center of each plot of Figure 2. The
gray area indicates the interior of the vessel. In each plot, the upper curve is for the vessel without robots, and the lower curve is for the vessel containing the
10-μm ringset with pumps. For comparison, the dashed curves are solutions to the Krogh model85 corresponding with the vessel without robots. (A, B)
Low- and high-demand scenarios of Table 2, respectively.
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Robot power

This section describes the steady-state power available to the
robots according to ourmodel in various scenarios.We first discuss
the average per robot power in the aggregate, for both high- and
low-capacity cases, which also indicates the total power available
to the aggregate as a whole. We then show how the power is
distributed among the robots, based on their location in the ringset.
Finally, we illustrate the qualitative features of these results in a
simpler, analytically solvable model to identify key scaling
relationships between robot design choices and power availability.

Average robot power

Table 4 gives the average power generated using the available
oxygen, per robot within the aggregate. As expected, robots



Table 4
Average per-robot power generation (in picowatts) in various scenarios⁎

Robot power generation capacity High capacity Low capacity

Inlet concentration CO2 (10
22/m3 ) 3 3 3 3 7 7 7 7 7 7 7 7

Pressure gradient ▿p (105 Pa/m) 1 1 5 5 1 1 5 5 1 1 5 5
Tissue power demand Pmax

tissue (kW/m3) 4 60 4 60 4 60 4 60 4 60 4 60
10-μm ringset (with pumps) 12 8 14 12 17 11 24 18 17 11 24 18
10-μm ringset (free diffusion) 11 7 12 10 15 10 22 16 6 3 8 6
1-μm ring (with pumps) 44 27 49 36 69 36 99 58 69 36 99 58
1-μm ring (free diffusion) 31 19 34 25 49 25 71 38 9 4 12 7

⁎ Free diffusion is the “no pumps” case. The values in boldface correspond with the low- and high-demand scenarios of Table 2.
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receive more oxygen and hence can generate more power when
inlet concentration is high, fluid speed is high or tissue power
demand is low. In the first two cases, the flow brings oxygen
through the vessel more quickly; in the last case, surrounding
tissue removes less oxygen. The less than twofold decrease in
robot power generation in the face of a larger 2.5-fold decrease in
O2 inlet concentration from the arterial to the venous end of the
capillary shows that robots extract more oxygen from red cells
than these cells would normally release while passing the length
of the vessel. Thus, robots get some of their oxygen as “new
oxygen” rather than just taking it from what the tissues would
normally get. This is possible because in this case, robots create
steeper concentration gradients than the tissue does.

The 10-μm ringset with pumps produces about the same
power in the low- and high-demand scenarios, consuming
oxygen at 5 × 109 molecule/s.

Comparing the different aggregate sizes shows lower power
generation, per robot, in the large aggregate compared with the
small one. This arises from the competition among nearby robots
for the oxygen. Nevertheless, the larger aggregate, with 10 times
as many robots, generates several times as much power in
aggregate as the smaller one. This difference identifies a design
choice for aggregation: larger aggregates have more total power
available but less on a per robot basis.

Robots using pumps generate only modestly more power than
robots relying on diffusion alone in our high-capacity design
example (see the “Robot power generation” section). In this case,
for robots without pumps, the power-generation site density, ρ-
react, is sufficiently large that oxygen molecules diffusing into the
robot are mostly consumed by the power generators near the
surface of the robot before they have a chance to diffuse back out
of the robot. For such robots, power generators far from the
plasma-facing surface receive very little oxygen and hence do
not add significantly to the robot power production.

Pumps give higher benefit for isolated rings of robots than for
tightly clustered aggregates. Although not evaluated in the
axially symmetric model used here, pumps may be even more
significant for a single isolated robot on the vessel wall. Such a
robot would not be competing with any other robots for the
available oxygen though would still compete with nearby tissue.

Low-capacity robots

The low-capacity robots have only 1/50th the maximum
power-generating capability of the high-capacity robots dis-
cussed earlier. Nevertheless, each robot's maximum power is
several times larger than the limit due to available oxygen. Thus,
pumps allow the robots to produce the same power as given in
Table 4 for the high-capacity robots. The pumps ensure the
absorbed oxygen is completely used by the smaller number of
reaction sites by increasing the concentration of oxygen within
the robots, so Eq. (5) gives the same power generation in spite of
the smaller value of ρreact.

On the other hand, the smaller number of reaction sites is a
significant limitation for robots without pumps. Comparing with
Table 4 shows pumps improve the average power by factors of
about 3 and 8 for the 10- and 1-μm ringsets, respectively.
Comparing with high-capacity robots without pumps shows the
factor of 50 reduction in reaction sites only reduces average
power by factors of about 3 and 5 for the 10- and 1-μm ringsets,
respectively. Thus, the reaction sites in the low-capacity scenario
are used more effectively than in the high-capacity robots: With a
smaller number of sites, each site does not compete as much with
nearby sites for the available oxygen.

Much of the power in robots without pumps is generated near
the plasma-facing surface, where oxygen concentration is
largest. In our case, the power for the high-capacity robots is
generated primarily within 100 nm of the robot surface. This
observation suggests that a design with power-generating sites
placed near this surface instead of uniformly throughout the
robot volume, as we have assumed, could significantly improve
power generation for robots without pumps. For example,
placing all the reaction sites uniformly within the 1/50th of the
robot volume nearest the surface would increase the local
reaction site density in that volume by a factor of 50. For low-
capacity robots, this placement would increase ρreact to the same
value as the high-capacity case, but only in a narrow volume,
within 23 nm of the surface with the robot geometry we use.
Elsewhere in the robot with this design ρreact = 0. Whereas we
might expect this concentration to increase power significantly,
in fact we find only a small increase (eg, 12% for the 10-μm
ringset in the low-demand scenario). Thus, concentrating the
reaction sites near the plasma-facing surface does not offer much
of a performance advantage.

Distribution of power among robots

Whereas all robots in a single ring have the same power due
to the assumption of axial symmetry, Figure 4 shows that power
varies with ring position in the 10-μm ringset. The robots at the
upstream edge of the aggregate receive more oxygen than the
other robots and hence produce more power. Power generation



Figure 4. Steady-state power generation, in picowatts, for robots as a function of their position along the vessel wall, starting from those at the upstream end of the
ringset (position 1) and continuing to those at the downstream end (position 10). The charts compare robots with pumps, absorbing all oxygen reaching them,
with robots relying on free diffusion (ie, without pumps), and high- and low-capacity robots. For robots with pumps, power for high- and low-capacity cases are
the same. (A, B) Low- and high-demand scenarios of Table 2, respectively.
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does not decrease monotonically along the vessel: Robots at the
downstream edge have somewhat more available oxygen than
those in the middle of the aggregate as robots at the edge of the
aggregate have less competition for oxygen. Figure 4 shows
significantly larger benefits of pumps at the edges of multiring
aggregates than in their middle sections, especially in the low-
demand scenario.

In the scenarios described earlier, robots produce power from
all the available oxygen. This is appropriate for applications
requiring as much power as possible for the aggregate as a whole.
At the other extreme, an application requiring the same behavior
from all robots in the aggregate would be limited by the robots
with the least available power. This would be the case for
identical robots, all of which perform the same task and hence
use the same power. In this case, the robots could increase
performance by transferring power from those at the edges of the
aggregate to those in the middle. Such transfer could take place
after generation (eg, via shared electric current) or prior to
generation by transfer of oxygen among neighboring robots.
However, such internal transfer would require additional
hardware capabilities. For robots with pumps, an alternative
transfer method is for robots near the edge of the aggregate to run
their pumps at lower capacity and thus avoid collecting all the
oxygen arriving at their surfaces. This uncollected oxygen would
then be available for other robots, though some of this oxygen
would be transported by the fluid past the robots or be captured
by the tissue rather than other robots. This approach increases
power to robots in the middle of the aggregate without requiring
additional hardware for internal transfers between robots, but at
the cost of somewhat lower total power for the aggregate.
Increasing as much as possible the power to the robots with the
least power leads to a uniform distribution of power among
the robots.

To quantify the trade-off between total power and its
uniformity among the robots, we consider all robots setting
each of the pumps on their surfaces to operate at the same rate
and the pumps uniformly distributed over the surface. This gives
a uniform flux of oxygen over the entire surface of all the robots.
The largest possible value for this uniform flux, and hence the
largest power for the aggregate, occurs when the minimum
oxygen concentration on the robot surfaces is zero—at that
point, the robot whose surface includes the location of zero
concentration cannot further increase its uniform flux. For
example, in the low-demand scenario, the maximum value for
this uniform flux is approximately 2.22 × 1019 molecule m–2 s–1.
Compared with the situation in Figure 4, this uniform flux gives
significantly lower power (39% leading ring, 56% trailing ring)
for the robots at the edges of the aggregate, somewhat lower
power for robots in positions 2 and 3 (87% and 98%,
respectively), and somewhat more power (ranging from 104%
to 116%) for the other robots. The combination of these changes
gives a total of 84% of the power for the aggregate when every
robot collects all the oxygen reaching its surface. The minimum
power per robot increases from 12 pW to 14 pW. Robots could
slightly increase power by accepting some nonuniformity of flux
over each surface while maintaining the same total flux to each
robot. This would occur when the minimum oxygen concentra-
tion on the entire length of the robot surfaces in a particular robot
ring is zero.

Using this approach to uniform power in practice would
require the robots to determine the maximum rate they can
operate their pumps while achieving uniform power distribution.
This rate would vary with tissue demand, and also over time as
cells pass the robots. A simple control protocol is for each robot
to adjust its pump rate up or down according to whether its power
generation is below or above that of its neighbors, respectively.
When concentration reaches zero on one robot, increasing pump
rate at that location would not increase power generation.
Communicating information for this protocol is likely simpler
than the hardware required to internally transfer power or oxygen
among robots but also requires that each robot is able to measure
its power-generation rate. Such measurements and communica-
tion would give an effective control provided they operate
rapidly compared with the time over which oxygen flux changes
(eg, as cells pass the robots on millisecond timescales). Longer
reaction times could lead to oscillations or chaotic behavior.86

A second approach to achieving a more uniform distribution
of power is to space the robots at some distance from each other
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on the vessel wall. This approach would be suitable if the
aggregated robots do not need physical contact to achieve their
task. For example, somewhat separating the robots would allow a
relatively small number to span a distance along the vessel wall
larger than the size of a single cell passing through the vessel.
This aggregate would always have at least some robots between
successive cells. Communicating sensor readings among the
robots would then ensure the response (eg, releasing chemicals)
is not affected by misleading sensor values due to the passage of
a single cell, giving greater stability and reliability without the
need for delaying response due to averaging over sensor readings
as an alternative approach to accounting for passing cells.
Another example for spaced robots is for directional acoustic
communication, at distances of about 100 μm.19 Achieving
directional control requires acoustic sources extending over
distances comparable with or larger than the sound wavelength.
Plausible acoustic communication between nanorobots involves
wavelengths of tens of micrometers.19

As a quantitative example of the benefit of spacing robots in
the context of our axially symmetric model, we consider a set of
rings of robots spaced apart along the vessel wall. When the
distance between successive rings is sufficiently large, the power
for each ring would be close to that of the isolated 1-μm ring
given in Table 4. For example, the power for the low-demand
scenario in the 1-μm ring of high-capacity robots decreases from
69 pW at high inlet concentration to 44 pW at low inlet
concentration, which spans the range of power for a modest
number of widely spaced 1-μm rings within a single vessel. As
described in the section “Tissue power and heating,” oxygen
absorption by robots can affect concentration over a few tens of
micrometers upstream of those robots. Thus, separating robot
rings by, say, 100 μmwill give power close to that of the isolated
rings, with a gradual decrease in power for successive rings due
to the decreasing cell saturation along the vessel.

A third approach to reducing variation in robot power, on
average, is through changing pump rates in time. For example,
adjacent nanorobot rings could operate with counterphased 50%
duty cycles, with one ring and its second nearest neighbor ring
using pumpswhile the intervening nearest neighbor has its pumps
off and does not absorb oxygen. The alternating rings of robots
would switch pumps on and off. In this case, robots would have
larger power than seen in Figure 4 for the half of the time they are
active and zero power for the other half. This temporal approach
would not be suitable for tasks requiring all robots to have the
same power simultaneously, but would be useful for tasks
requiring higher burst power from robots throughout the
aggregate where the robots are unable to store oxygen or power
for later use. Provided the duty cycle is sufficiently long, our
steady-state model can quantify the resulting power distribution.
For example, in the low-demand scenario, total flux for the
aggregate is 79% of that when every robot collects all the oxygen
reaching its surface, and the minimum power per robot drops
from 12 pW to 10 pW. Thus, when averaged over the duty cycle,
this temporal technique reduces total power without benefiting
the robots receiving the minimum power. In this case, the
temporal approach does not improve minimum robot power (on
average) as the power gain to a robot while its neighbors are off is
less than a factor of 2, which does not compensate for the loss due
to each robot being off for half the time. Applying the steady-state
model to this temporal variation in robot activity requires the duty
cycle be long enough for the system to reach steady-state
behavior after each switch between the active subset of robots,
and that the switching time is short compared with the duty cycle
so most of the robots' power arises during the steady-state
portions of the cycle between switching. Diffusion provides one
lower bound on this time: when neighboring robots switch pumps
from on to off or vice versa, the characteristic diffusion time for
oxygen over the distance between next nearest neighbors (1 μm)
is about 0.1 millisecond. Adjustments in cell saturation for the 1-
μm shift in the location of the active robots between each half of
the duty cycle is a further limitation on the duty cycle time for the
validity of the steady-state model, though this is likely to be
minimal as the cells are separated from the robots by the plasma
gap in the fluid. Because the steady-state model averages over the
position of passing cells, another lower bound on the duty cycle
arises from the time for a cell to pass the robots. From the speeds
in Table 1, this time is at least 100 milliseconds.

Analytical model for an isolated spherical robot

The dependence of robot power on design parameters
described above may appear contrary to simple intuitions.
First, one might expect that the 10-μm ringset, with 10 times the
surface area in contact with the plasma, would absorb about 10
times as much oxygen as the 1-μm ring. Instead we find only
about a factor of 2 to 4 increase. Second, the benefit of pumps,
less than a factor of 2 for the high-capacity robots, may seem
surprisingly small. Third, the low-capacity robots, with 1/50th
the reaction sites of the high-capacity robots, nevertheless
generate about 1/5th as much power as high-capacity robots in
the case with no pumps. And finally, in spite of the higher
concentration near the robot surface than deep inside the robot
when there are no pumps, increasing the reaction site density by
placing all the reaction sites near the robot surface gives little
benefit. Although the specific values of these designs depend on
the geometry and environment used in our model, these general
features of small robots obtaining power through diffusion apply
in other situations as well.

In this section, we illustrate how these consequences of design
choices arise in the context of a scenario for which the diffusion
equation has a simple analytic solution, thereby identifying key
physical effects leading to these behaviors. Specifically, we
consider an isolated spherical robot of radius a in a stationary fluid
with oxygen concentration C far from the sphere.

Such a sphere with a fully absorbing surface collects oxygen
at a rate 4pDo2aC.

69 This expression illustrates a key property of
diffusive capture: The rate depends not on the object's surface
area but on its size. This behavior, which also applies to other
shapes,69 arises because while larger objects have greater surface
areas, they also encounter smaller concentration gradients. As a
quantitative example, taking the sphere to have the same volume
as the robot, that is, (4/3)πa3 = Vrobot given in Table 3, the
oxygen absorbed by the sphere generates 320 and 750 pW for C
equal to the low and high inlet oxygen concentrations in the
plasma from Table 1, respectively. These power values are larger
than for robots on the vessel wall described above. Unlike the
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sphere in a stationary fluid, the aggregated robots compete with
each other for the oxygen, the fluid moves some of the oxygen
past the robots before they have a chance to absorb it, and the
surrounding tissue also consumes some of the oxygen. The
replenishment of oxygen from the passing blood cells is not
sufficient to counterbalance these effects.

The spherical robot also indicates the benefit of pumps. The
fully absorbing sphere, with a zero concentration boundary
condition at the surface, corresponds with using pumps. For robots
without pumps, an approximation to Eq. (5) allows a simple
solution. Specifically, because the Michaelis-Menten constant for
the robot power generators, K, is much larger than the oxygen
concentrations (eg, as seen in Figure 2), robot power generation
from Eq. (5) is approximately Probotc eqreactr = Kð ÞCo2 . Dividing
by e/6 gives the oxygen consumption rate density as gCo2 , where
γ = 6ρreactr/K. Solving the diffusion equation, Eq. (1), for a sphere
in a stationary fluid with concentration C far from the sphere,
with free diffusion through the sphere's surface and reaction rate
density gCo2 inside the sphere, gives the rate oxygen is absorbed
by the sphere (and hence reacted to produce power) as87

4pDo2C a − l tanh a = lð Þð Þ where l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO2 = g

p
. Thus free

diffusion produces a fraction

fl = 1 −
l
a
tanh

a
l

� �
ð10Þ

of the power produced by the fully absorbing sphere. The
distance μ is roughly the average distance an oxygen molecule
diffuses in the time a power-generation site consumes an oxygen
molecule. When a freely diffusing molecule inside the robot has
a high chance to diffuse out of the robot before it reacts (μ large
compared with a), fμ is small so pumps provide a significant
increase in power. Conversely, when μ is small compared with
a, pumps provide little benefit: The large number of reaction
sites ensure the robot consumes almost all the diffusing oxygen
reaching its surface.

This argument illustrates a trade-off between using pumps to
keep oxygen within the robot and the number of power
generators. In particular, if internal reaction sites are easy to
implement, then robots with many reaction sites and no pumps
would be a reasonable design choice. Conversely, if reaction
sites are difficult to implement while pumps are easy, then robots
with pumps and few reaction sites would be a better choice.

A caveat for robots with few power-generating sites is that
Eq. (10) applies when oxygen consumption is linear in the
concentration, as given by gCo2 . This expression allows
arbitrarily increasing the reaction rate by increasing the
concentration, no matter how small the number of reaction
sites. This linearity is a good approximation of Eq. (5) only when
Co2K. At larger concentrations, the power density saturates at
eρreactr. When ρreact is sufficiently small, this limit is below the
power that could be produced from all the oxygen that a fully
absorbing sphere collects. Thus, in practice, the benefit of using
pumps estimated from the linear reaction rate, G = f −1l , is limited
by this bound when ρreact is small.

As an example, for a spherical robot with the high-capacity
reaction site density of Table 3, γ = 1.8 × 104/s and μ = 0.33 μm,
with the fairly modest benefit of pumps G = 2.0. The low-
capacity robots have γ = 360/s and μ = 2.4 μm with G = 42. In
this case, the limit due to the maximum reaction rate of Eq. (5)
applies, somewhat limiting the benefit of pumps to a factor of 34,
but pumps still offer considerable benefit. These values for the
benefits of pumps are somewhat larger than seen with our model
for robots on the vessel wall. Nevertheless, the spherical example
identifies the key physical properties influencing power
generation with and without pumps and how they vary with
robot design choices.

Eq. (10) also illustrates why power in the low-capacity
robots is not as small as one might expect based on the
reduction in reaction sites by a factor of 50. While the value of
γ is proportional to ρreact, the typical diffusion distance μ varies
as 1/√ρreact, so a decrease in reaction sites by a factor of 50
only increases μ by about a factor of 7. The square root
dependence arises from the fundamental property of diffusion:
typical distance a diffusing particle travels grows only with the
square root of the time. The modest change in diffusion
distance, combined with Eq. (10), gives a smaller decrease in
power than the factor of 50 decrease in capacity. The low-
capacity robot has higher concentrations throughout the sphere,
so each reaction site operates more rapidly than in the high-
capacity case. This increase partially offsets the decrease in the
number of reaction sites.

Without pumps, the higher oxygen concentration near the
sphere's surface than near its center means much of the power
generation takes place close to the surface. Thus, we can expect
an increase in power by placing reaction sites close to the
surface rather than uniformly distributed throughout the sphere.
Consistent with the results from the model described in the
“Methods” section, evaluating Eq. (1) with the reaction
confined to a spherical shell shows only a modest benefit
compared with a uniform distribution. The benefit is larger for
a thinner shell and is determined by the same ratio, a/μ,
appearing in Eq. (10). In particular, the largest benefit of using
a thin shell, only 12%, occurs for a/μ ≈ 3.5. The parameters
for the high- and low-capacity robots are somewhat below this
optimal value, giving only 10% and less than 1% benefit from
a thin shell, respectively, for the sphere. These modest
improvements correspond with the small benefits of using a
thin shell seen in the solution to our model for both high- and
low-capacity robots. Hence the solution of Eq. (1) for the
sphere illustrates how, with a fixed number of reaction sites,
concentrating them near the robot surface provides only limited
benefit. The benefit of the higher reaction site density in the
shell is almost entirely offset by the shorter distance molecules
need to diffuse to escape from the thin reactive region. That is,
the benefit of placing all the reaction sites in a thin shell arises
from two competing effects. When μ is large (low capacity),
the concentration is only slightly higher near the surface than
well inside the sphere. So there is little benefit from placing the
reaction sites closer to the surface. On the other hand, when μ
is small (high capacity), even uniformly distributed reaction
sites manage to consume most of the arriving oxygen, giving
near-zero concentration at the surface of the sphere and little
scope for further improvement by concentrating the reaction
sites. Thus the largest, though still modest, benefit for a shell
design is for intermediate values of a/μ.



Figure 5. Deviation from equilibrium oxygen saturation in cells, S − Sequib,
along the boundary between the cell and cell-free portions of the fluid
illustrated in Figure 1, as a function of distance along that boundary. A
deviation of zero indicates the oxygen held in the cells is in perfect
equilibrium with the surrounding plasma. Saturation ranges between 0 and 1.
The curves correspond with the low- and high-demand scenarios of Table 2,
when robots are present (upper curves) or absent (lower curves). For the
vessel without robots and low demand, S − Sequib is indistinguishable from
zero on the scale of the plot. The gray band indicates the 10-μm length of the
vessel wall in which the robots are stationed, within the 60-μm length of the
capillary illustrated.

Figure 6. Power density in tissue next to the vessel wall relative to maximum
demand (ie, the ratio Ptissue = Pmax

tissue from Eq. (6)) as a function of position
along the vessel. The curves are for the low- and high-demand scenarios of
Table 2. The two lines at the top are for the vessel without robots, and the
lower curves are for the 10-μm ringsets. In each case, the curve with higher
values corresponds with the low-power demand scenario. The gray band
indicates the 10-μm length of the vessel wall in which the robots are
stationed, within the 60-μm length of the capillary illustrated.
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Oxygen replenishment from passing cells

The high power density of the robots creates a steep gradient
of oxygen concentration in the plasma. Thus, unlike the minor
role for nonequilibrium oxygen release in tissue,59 the small size
of the robots makes passing red cells vary significantly from
equilibrium with the concentration in the plasma. Figure 5
illustrates this behavior, using one measure of the amount of
disequilibration: the difference between saturation S and the
equilibrium value Sequib corresponding with the local concentra-
tion of oxygen in the plasma, as given by Eq. (2). We compare
with a vessel without robots, in which the blood cells remain
close to equilibrium.

Figure 5 shows that the kinetics of oxygen release from red
cells plays an important role in limiting the oxygen available to
the robots. However, the region of significant disequilibration is
fairly small, extending only a few micrometers from the robots.

Tissue power and heating

The robots affect tissue power in two ways. First, the robots
compete for oxygen with nearby tissue. Second, the robots
consume oxygen from passing blood cells, thereby leaving less
for tissue downstream of the robots.

For the effect on nearby tissue, Figure 6 shows how tissue
power density varies next to the vessel wall. In the vessel without
robots, power density declines slightly with distance along the
vessel as the tissue consumes oxygen from the blood. The total
reduction in tissue power density is fairly modest, less than 10%
even for high power demand in the tissues. The relative reduction
is less for tissue at larger distances from the vessel, though such
tissue has lower power generation due to less oxygen reaching
tissue far from the vessel. This reduction arises both from direct
competition by the robots for available oxygen and the physical
blockage of the capillary wall, forcing surrounding tissue to rely
on oxygen diffusing a longer distance from unblocked sections
of the wall. In the low-demand case, direct competition is the
major factor, as seen by the dips in the power density at each end
of the aggregate, where the absorbing flux is highest. In the high-
demand case, the tissue's consumption reduces the amount of
oxygen diffusing through the tissue on either side of the
aggregate, giving the larger drop in tissue power density in the
middle of the aggregate.

For longer-range consequences, Figure 7 shows how the
oxygen saturation in the blood cells changes as they pass the
robots. Slowly moving cells (in the low-demand scenario) are
substantially depleted while passing the robots, even though
tissue power demand in this scenario is low. This depletion arises
from the cells remaining near the robots a relatively long time as
cells move slowly with the fluid. The resulting saturation shown
in the figure, around 0.6, is below the equilibrium saturation (S =
0.7) for typical concentrations at the venous end of capillaries,
given in Table 1. Thus in the low-demand scenario, the robots
remove more oxygen from passing cells than occurs during their
full transit of a vessel containing no robots. In this scenario, the
tissue has low power demand, so the depletion of oxygen from
the cells may have limited effect on tissue along the vessel
downstream of the robots. However, this reduction could
significantly limit the number of robots that can be simulta-
neously present inside a given capillary.

Another observation from Figure 7 is a significant decrease in
cell saturation a short distance upstream of the robots in the low-
demand scenario. We can understand this behavior in terms of
the Peclet number, which characterizes the relative importance of
convection and diffusion over various distances.65 In particular,
D/vavg is the distance at which diffusion and convection have
about the same effect on mass transport in a moving fluid. At
significantly longer distances, convection is the dominant effect,
and absorption of oxygen at a given location in the vessel has



Figure 7. Cell saturation S as a function of distance along the vessel.
Saturation ranges between 0 and 1. The curves correspond with the low- and
high-demand scenarios of Table 2, with the upper curves of each pair
corresponding with a vessel without robots. The gray band indicates the 10-
μm length of the vessel wall in which the robots are stationed, within the 60-
μm length of the capillary illustrated.
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little effect on upstream concentrations over such distances. In
our scenarios, D/vavg ranges from ∼2 μm (high demand) to ∼10
μm (low demand). Thus, the robots significantly affect the
oxygen concentration in the plasma over a few tens of
micrometers upstream of their location. Cell saturation remains
close to equilibrium in this upstream region (Figure 5), hence the
reduced oxygen concentration in the plasma lowers cell
saturation in this region upstream of the robots (Figure 7). This
distance is also relevant for spacing rings of robots far enough
apart to achieve nearly uniform power, as described in the section
“Distribution of power among robots.”

The devices in this example have a volume of Vrobot ≈ 1 μm3

so the robot power generation corresponds with power densities
around 107 W/m3, several orders of magnitude larger than power
densities in tissue, raising concerns of possible significant tissue
heating by the robots. However, for the isolated aggregate used
in this scenario, waste heat due to the robots' power generation is
rapidly removed, resulting in negligible maximum temperature
elevation of about 10−4°C.
Fluid flow and forces on the robots

The robots change the fluid flow by constricting the vessel.
With the same pressure difference as a vessel without robots, as
used in our model, this constriction results in somewhat lower
flow speed through the vessel. Specifically, the 1- and 10-μm-
long aggregates reduce flow speed by 6% and 20%, respectively.

The fluid moving past the robots exerts a force on them. To
remain on the wall, the robots must resist this force through
their attachment to the vessel wall.19 This force is a
combination of pressure difference, between the upstream and
downstream ends of the aggregate, and viscous drag. For the
laminar flow, the force f is linear in the pressure gradient ▿p
imposed on the vessel: f = a▿p where a = 1.56 × 10−15 m3 and
5.02 × 10−16 m3 for the 10-μm and 1-μm ringsets, respectively.
For example, the flow imposes a force of 160 pN on the 10-μm
ringset when the pressure gradient is 105 Pa/m. The 10-μm
ringset experiences about three times the force of the 1-μm ring
but covers 10 times the surface area. Thus, the larger aggregate
requires about one-third the attachment force per robot. Applied
forces can affect cells.88 In particular, endothelial cells use
forces as a trigger for new vessel growth,89 which is important
for modeling changes in the vessels over longer timescales than
we consider in this article.90
Discussion

The scenarios of this article illustrate how various physical
properties affect robot power generation. Robots about 1 μm in
size positioned in rings on capillary walls could generate a few
tens of picowatts in steady state from oxygen and glucose
scavenged locally from the bloodstream. Aggregates can
combine their oxygen intake for tasks requiring higher sustained
power generation. The resulting high-power densities do not
significantly heat the surrounding tissue but do introduce steep
gradients in oxygen concentration due to the relatively slow
reaction kinetics of oxygen release from red cells. The robots
reduce oxygen concentration in nearby tissues, but generally not
enough to significantly affect tissue power generation.

The fraction of the generated power available for useful
activity within the robot depends on the efficiency of the glucose
engine design, with ∼50% a reasonable estimate for fuel cells.19

The robots will have 5 to 30 pW of usable steady-state power
while on the vessel wall. As one indication of the usefulness of
this power for computation, current nanoscale electronics and
sensors have an energy cost per logic operation or sensor
switching event of a few hundred kBT.

36 Though future
technology should enable lower energy use,19 even with 500
kBT ≈ 2 × 10−18 J the available power from circulating oxygen
could support several million computational operations per
second. At the size of these robots, significant movements of
blood cells and chemical transport occur on millisecond
timescales. Thus, the power could support thousands of
computational operations (eg, for chemical pattern recognition)
in this time frame. The aggregated robots could share sensor
information and CPU cycles, thereby increasing this capability
by a factor of tens to hundreds.

Devices of the type modeled in this article have numerous
potential clinical applications. For example, nanorobot aggre-
gates positioned in capillary beds will allow direct in situ
detection of cancer biomarkers, including tumor cell membrane
antigen signatures, tumor metabolic products, and blood-borne
angiogenesis growth factors, enabling precise localization of
early stage tumors and early detection of microtumors. The
computational capability enabled by the fuel cell power could be
used for chemical pattern recognition to enable precise long-term
high-resolution chemical diagnostics because a fixed-site
aggregate can monitor relevant low-concentration chemicals
released near cells over extended periods of time to improve
sensitivity to very low concentrations. Robot aggregates with
available power of about 1000 pW could deliver precisely
localized (ie, within about a single cell diameter) and precisely
timed bursts (ie, within tens of milliseconds) of concentrated
anticancer drug doses, providing minimal spillover to neighbor-
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ing healthy cells and allowing amplification of the activity and
effectiveness of co-delivered photodynamic, radiation, particle
beam, or related cancer therapies. Nanorobot aggregates could
serve as mobile (and perhaps switchable) contrast agents,
enabling high-precision noninvasive capillary wall sampling
and mapping thus enabling comprehensive in vivo clinical
assays of capillary beds for sclerotic or necrotic vascular tissue
and related vascular physiologic or structural pathologies.
Nanorobot aggregates could pinpoint the location of bacterial
metabolic products, allowing direct detection of biofilms and
related focal infections. When infections are detected, the robot
aggregates can dispense antibacterial agents with pinpoint
accuracy allowing low-volume high-concentration aliquots to
be employed therapeutically. Nanorobot aggregates could also
perform functional metabolic monitoring of high-concentration
metabolites in precisely localized capillary bed volumes in the
brain over very narrow time intervals, greatly enhancing the
spatial and time resolution of scans in small volumes compared
with conventional positron emission tomography (PET) or
functional MRI—a capability of clinical utility both for brain
trauma assessment and for anesthesiology during surgery.

The robots need not generate power as fast as they receive
oxygen, but could instead store oxygen received over time to
enable bursts of activity as they detect events of interest. Robots
with pumps have a significant advantage in burst-power
applications because pumps enable long-term high-concentration
onboard gas accumulation to support brief periods of near
maximal power generation. As an example, in our scenarios
individual robots with pumps receive about 108 molecule/s. If
instead of using this oxygen for immediate power generation, the
robot stored the oxygen received over 1 second, it would have
enough to run the power generators at near maximal rate (giving
about 104 pW) for several milliseconds. By contrast, robots
without pumps would only have a modest benefit from oxygen
diffusing into the robot, achieving a concentration equal to the
ambient concentration in the surrounding plasma as given in
Table 1. This concentration could only support generating
several hundred picowatts for about a tenth of a millisecond.
Thus, whereas pumps may give only modest improvement for
steady-state power generation, they can significantly increase
power available in short bursts.

Our model could be extended to estimate the amount of
onboard storage that would be required to avoid pathologic
conditions related to O2 competition between tissues and
nanorobots. In particular, larger aggregates would deplete
oxygen over longer distances for which diffusion through the
tissue from upstream of the robots would be insufficient.
Furthermore, larger aggregates of tightly spaced robots would
block transport from the capillary into the surrounding tissue
even if the robots did not use much oxygen. Onboard oxygen
storage would allow higher transient power densities for the
robots, though this could lead to heating issues for larger
aggregates. To estimate the potential for onboard storage, a
ringset containing 200 robots with volume 200Vrobot ≈ 220 μm3

of which 10% is devoted to compressed O2 storage at 1000 atm
at body temperature can store about 5 × 1011 molecules of O2 in
the aggregate. The incoming flow in the capillary provides about
0.2 × 1011 to 1 × 1011 molecules per second, depending on the
flow speed, of which about one-quarter to one-half is available to
the tissue and robots. This means the oxygen stored in the
aggregate is equivalent to only several seconds of oxygen
delivery through the vessel. Thus, oxygen storage in the robots
themselves cannot significantly increase mission duration,
though such storage might be useful for short-term (ie, a few
seconds) load leveling functions (eg, maintaining function
during temporary capillary blockage due to white cell passage).

Alternatively, the aggregated robots could have oxygen
supplemented with a modest circulating population of
respirocytes18 (ie, 1-μm spherical robots able to carry oxygen
to tissues far more effectively than red blood cells). Such robots
would continuously and entirely eliminate any oxygen depletion
regions in the tissue due to robot power generation and allow
higher robot power generation because oxygen would no longer
be such a limiting factor. Such machines could not only carry
significantly more oxygen than red blood cells but would also
respond more quickly to abrupt decreases in partial pressure due
to consumption by aggregated robots on vessel walls. For
example, sensors should be able to detect the drop in
concentration of the size we see near the robots—for example,
3 × 1022 to 2 × 1022 molecule/m3 (or about 40 to 20 mmHg)—
within a millisecond.19 This time is short enough that the
machines will have moved only about a micrometer and so will
still be near the robots. Once they detect the pressure drop, the
machines could release oxygen rapidly, up to 1.5 × 108

molecule/s,18 while passing near the aggregated robots.
However, in practice the release rate is constrained by the
effervescence limit in plasma to about 2.5 × 107 molecule/s.19

An interesting question for future work is evaluating how much
of this released oxygen reaches the robots on the vessel wall,
which will depend on how close to the vessel wall the fluid
places the respirocytes. In this situation, aggregated robots could
also communicate19 to passing respirocytes to activate or
suppress their oxygen delivery, depending on the task at hand.
Thus, both the oxygen handling capabilities of respirocytes, with
faster kinetics and larger storage capacity than red cells, and the
possibility of communication provide examples of the flexibility
of small devices with programmable control. Moreover, this
scenario illustrates the benefits of mixing robots with differing
hardware capabilities.

Our model considers static aggregates on vessel walls but
could be extended to study power availability for aggregates
that move along the walls.91 Another significant scenario is
robots moving passively with the fluid, where they could draw
oxygen from the surrounding plasma. The oxygen unloading
model used here could evaluate how rapidly nearby cells would
replenish oxygen in the plasma as the cells and robots move
through the capillary.

We treat environmental parameters (eg, fluid flow speed and
tissue oxygen demand) as fixed by the surroundings. Beyond the
local changes in the robots' environment described by the model,
sustained use of these robots could induce larger-scale responses.
For example, the increased use of oxygen by the robots could
lead to increased blood flow, as occurs with, say, exercising
muscles, by increased pressure to drive the fluid at higher speed
or dilation of the vessels. The local oxygen deficits due to high
robot power use are smaller in scale than higher tissue demand
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(eg, from increased activity in a muscle). Thus, an important
open question is whether localized robot oxygen consumption
over a long period of time can initiate a less localized response to
increase flow in the vessels.

The possibility of large-scale responses to robot activity raises
a broader issue for nanomedicine treatment design when
technology allows altering the normal correlation among
physical quantities used for signalling in the body.19,20 An
example at larger scales is the response to low oxygen mediated
by excess carbon dioxide in the blood, which can lead to edema
and other difficulties for people at high altitudes.92 In terms of
downstream consequences of the robots' oxygen use, low
saturation of cells leaving an isolated capillary should not be a
problem because the bulk of oxygen exchange occurs in the
capillary bed, not in the larger collecting vessels. However, cells
reaching low saturation before exiting the capillary would
produce localized anoxia in the tissue near the end of the
capillary. This could be relieved in part by oxygen diffusion from
neighboring tissue cells if the anoxic region is not too large or too
severe. Specific effects of such localized anoxia remain to be
fully identified. Whole capillaries subjected to ischemic condi-
tions over a period of days remodel themselves (eg, by adding
new vascular branches and by increasing the tortuosity of
existing vessels93). This observed behavior is likely to be a
localized (ie, cell-level) response, hence we might expect such a
response if a portion of a capillary downstream of the robots was
driven into ischemic conditions. There could also be a localized
inflammatory response to a large enough number of capillary-
wall endothelial cells under stress, especially for cells stressed to
the point of apoptosis, but moderate ischemia alone seems
unlikely to generate this response.94 Some chemicals, such as
nitric oxide (NO), prostaglandin D2 (PGD2) and leukotriene D4
(LTD4), dilate the vessels. These chemicals can produce
significant activity in the endothelial cells that line (and thus
form the tube geometry of) the capillary vessel, so their influence
can be fairly direct and quick.95,96 Nanorobots in the vessels
could release such chemicals to alter behavior of the vessels.
Similarly, a large robot population constantly drawing excess
oxygen supply could induce elevated erythropoietin secretion (if
unregulated by the robots), increasing red cell production in the
erythroid marrow.18,97

Direct heating is not a problem with aggregates of the size
considered here, in spite of their high power density compared
with tissue. For the large aggregate we examined (tightly
covering 10 μm along the vessel wall), oxygen diffusion through
the tissue from regions upstream and downstream of the robots
provided oxygen to the tissue outside the section of the vessel
blocked by the robots. Larger aggregates, especially if tightly
packed, would significantly reduce oxygen in the tissues even if
the robots used little power themselves, simply due to their
covering the vessel wall over a long enough distance that
diffusion through the tissue from unblocked regions is no longer
effective. The inducement of nonlinear tissue thermal responses
(eg, inflammation or fever) due to the heat generated by larger
aggregates or multiple aggregates in nearby capillaries is an
important question for future work.

Nanorobots parked or crawling along the luminal surface of
the vessel may activate mechanosensory responses from the
endothelial cells across whose surfaces the nanorobots touch.40 If
the aggregates cover a long section of the vessel wall, they could
produce local edemas because narrowing of the vessels by the
presence of the nanorobots increases local pressure gradients and
fluid velocities. While we focus on a single aggregate in one
microscopic vessel, additional issues arise if a large population
of circulating robots forms many aggregates. In that case, the
multiple aggregates will increase hydrodynamic resistance
throughout the fluidic circuit. Thus, the robots could make the
heart work slightly harder to pump fluid against the slightly
higher load. Moreover, if robot aggregates detach from the wall
without complete disaggregation, these smaller aggregates
moving in the blood may be large enough to block a small vessel.

The scenarios examined in this article can suggest suitable
controls to distribute power when robots aggregate. Moreover,
power control decisions interact with the choices made for the
aggregation process. For example, if the task requires a certain
amount of total power for the aggregate (eg, as a computation
hub), then the aggregation self-assembly protocol would depend
on how much oxygen is available (eg, to make a larger aggregate
in vessels with less available oxygen) or recruit more passing
robots when the task needs more power. An example of this latter
case could be if aggregates are used as computation hubs to
validate responses to rare events: When local sensor readings
indicate the possibility of such an event, the aggregate could
temporarily recruit additional robots to increase power and
computational capability for evaluating whether those readings
warrant initiating treatment.

Another approach to designing controls for teams of robots is
the formalism of partially observable Markov processes.98,99

This formalism allows for arbitrarily complex computations
among the robots to update their beliefs about their environment
and other robots. Unfortunately, this generality leads to
intractable computations for determining optimal control
processes. For the situations we studied, the power constraints
on capillary wall–resident microscopic robots operating with
oxygen available in vivo means the local rules must be simple.
Including this constraint in the formalism could allow it to
identify feasible control choices for large aggregates of
microscopic robots in these situations.

The power constraints from our model could provide useful
parameters for less detailed models of the behavior of large
numbers of robots in the circulation in the context of the
scenarios examined in this article. In particular, power limits the
computation, communication, and locomotion capabilities of the
robots. These constraints could be incorporated in simplified
models, such as cellular automata approaches to robot behavior.
These automata are a set of simple machines, typically arranged
on a regular lattice. Each machine is capable of communicating
with its neighbors on the lattice and updates its internal state
based on a simple rule. For example, a two-dimensional scenario
shows how robots could assemble structures100 using local rules.
Such models can help understand structures formed at various
scales through simple local rules and some random
motions.101,102 A related analysis technique considers swarms103

(ie, groups of many simple machines or biological organisms
such as ants). In these systems, individuals use simple rules to
determine their behavior from information about a limited
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portion of their environment and neighboring individuals.
Typically, individuals in swarms are not constrained to have a
fixed set of neighbors but instead continually change their
neighbors as they move. Swarm models are well-suited to
microscopic robots with their limited physical and computational
capabilities and large numbers. Most swarm studies focus on
macroscopic robots or behaviors in abstract spaces.104 In spite of
the simplified physics, these studies show how local interactions
among robots lead to various collective behaviors105 and provide
broad design guidelines. A step toward more realistic, though
still tractable, models of large aggregates could incorporate the
power constraints from the model presented in this article.

In addition to evaluating performance of hypothetical
medical nanorobots, theoretical studies identifying trade-offs
between control complexity and hardware capabilities can aid
future fabrication. One example is the design complexity of the
robot's fuel acquisition and utilization systems. For steady-state
operation on vessel walls, we found limited benefit of pumps
over free diffusion when numerous onboard power generators
can be employed. In such cases, our results indicate that a
design without pumps does not sacrifice much performance.
More generally, control can compensate for limited hardware
(eg, sensor errors or power limitations), providing design
freedom to simplify the hardware through additional control
programs. Thus, the studies could help determine minimum
hardware performance capabilities needed to provide robust
systems-level behavior.

A key challenge for robot design studies based on
approximate models is validating the results. In our case, the
most significant approximations are the treatment of cells as an
averaged component in the fluid and the lumped-model kinetics
for oxygen unloading. With increased computational power,
numerical solution of more accurate models could test the
validity of these approximations. As technology advances to
constructing early versions of microscopic robots, experimental
evaluations will supplement theoretical studies. One such
experiment is operating the robots in manufactured microfluidic
channels.65 This would test the robots' ability to aggregate at
chemically defined locations and generate power reliably from
known chemical concentrations in the fluid. After such in vitro
experiments, early in vivo tests could involve robots acting as
passive sensors in the circulatory system and aggregating at
chemically distinctive locations. Such nanorobots will be useful
not only as diagnostic tools and sophisticated extensions to drug
delivery capabilities106 but also as an aid to validate numerical
models and hence develop robot designs and control methods for
more active tasks.
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