Nanomedicine, Volume I: Basic Capabilities

© 1999 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999


4.2.4 Chemical Assay

It may also be useful to design a sensor that is capable of detecting as many different chemical species as possible, in contrast to detecting the precise concentration of a single species, for use in chemomessaging (Section, chemonavigation (Section 8.4.3), cellular diagnosis (Chapter 21), and other in vivo assay work. Counting rotors may be used for this purpose. Each 12-receptor sorting rotor/counting rotor pair has a minimum 400 nm3 volume.10 Allowing an additional ~800 nm3 per pair to account for power, control, mechanical attachments and housings, which includes ~300 nm3 per pair for sample chamber volume and sample access, requires ~100 nm3 per receptor, roughly the same as for the steric probe units described in Section 4.2.1. A dedicated 1 micron3 chemical assay nanorobot, which includes ~0.25 micron3 sample volume, with ~107 pairs (receptors) could thus continuously scan for as many as ~107 different chemical species, counting 'N ~ 1 large molecule/sec at concentrations of cligand ~ 10-10 molecules/nm3.


Last updated on 17 February 2003